Appendix F: Fish and Macroinvertebrate Survey Reports

Fish Distribution and Water Quality of the Manor Kill, Schoharie County, NY

Josh Haley & Rob Poprawski

Department of Fisheries & Wildlife, State University of New York, Cobleskill, NY 12043USA

Abstract: A survey of the Manor Kill, Schoharie County, NY was conducted to determine the distribution of the fish and water quality parameters of the stream. To meet this goal, 15 sites were sampled in the Manor Kill, and the Bear Kill, which is a major tributary of the Manor Kill. Data collected indicated that all water quality parameters except for alkalinity, and hardness were within optimal levels. The fish sampling showed that there is a stable trout population as well as a stable forage base for the trout.

Introduction

This survey of the Manor Kill, Schoharie County, NY was conducted at the request of the Town of Conesville. The Manor Kill flows into the Schoharie Reservoir. This makes the Manor Kill a high interest stream to not only Schoharie County but also the City of New York. The goal of the sponsor is to determine the fish distribution, and water quality of the Manor Kill.

Historically, the Manor Kill was stocked with brown trout (*Salmo trutta*) and brook trout (*Salvilinus fontinalus*) by the New York State Department of Environmental Conservation. New York State stopped stocking this water over 30 years ago.

Materials & Methods

Manor Kill is located in southern Schoharie County and runs through the town of Conesville along County Route 990V (Figure 1). The survey was conducted on three different dates. The water quality data was collected on 6 April 2008. The fish were sampled on two different dates. The first fish survey was on 27 April 2008, and the second was conducted on 15 September 2008.

The first part of the survey was the water quality data collection. In order to collect the water quality data, three pieces of equipment were used. The YSI water analyzer was used to collect Dissolved Oxygen, pH, Conductivity, Salinity, Temperature, and Total Dissolved Solids. In order to collect turbidity a turbidometer was used. Alkalinity and hardness was determined

using a HACH Test kit. Finally, in order to test the Phosphorus levels in the stream, a total phosphorus lab test was conducted.

Fish sampling was conducted using a Halltech 2000 backpack electrofishing unit. Each site was sampled for 1000 seconds. The fish collected were indentified. The trout, along with the largest and smallest of all other species were measured.

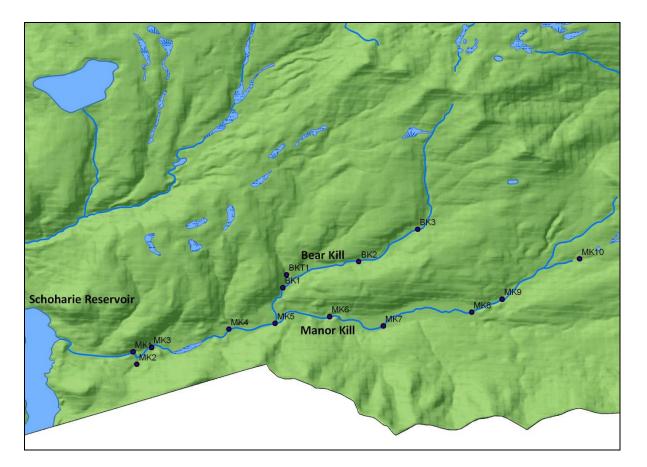


Figure 1: Map of sample sites on the Manor Kill, and Bear Kill Schoharie County, NY

Results

All water quality parameters except for alkalinity, and hardness were within normal levels (Table 1). Optimal levels of hardness, and alkalinity are between 100 and 400 mg/L. Alkalinity at all sites was 17.1mg/L, and Hardness levels at all sites were 51.3mg/L (Table 1).

site	Temperature(°C)	pН	D.O. (mg/L)	TDS(g/L)	Cond(µs/cm)	Salinity	Alk(mg/L)	Hard(mg/L)	Turbidity (NTU)	Phosphorus(mg/L)
1	2.9	7.3	13.1	0.017	16	0.01	17.1	51.3	3.5	Below detectable limits
2	3.4	6.9	13.2	0.012	11	0.01	17.1	51.3	3.5	Below detectable limits
3	3.4	6.8	13.2	0.017	15	0.01	17.1	68.4	4.2	Below detectable limits
4	3.4	6.9	13.1	0.017	15	0.01	17.1	85.5	3.4	Below detectable limits
5	3.9	7.3	12.1	0.32	26	0.01	17.1	34.2	5.0	Below detectable limits
6	4.1	6.7	12.8	0.015	14	0.01	17.1	68.4	6.0	Below detectable limits
7	4.1	6.8	12.9	0.014	13	0.01	17.1	51.3	2.3	Below detectable limits
8	3.6	6.8	13.2	0.013	12	0.01	17.1	68.4	2.5	Below detectable limits
9	3.9	6.7	12.9	0.014	13	0.01	17.1	34.2	1.4	Below detectable limits
10	4.1	6.5	13.0	0.012	11	0.01	17.1	34.2	2.0	Below detectable limits
BK1	4.8	6.6	12.4	0.014	13	0.01	17.1	34.2	2.4	Below detectable limits
BK2	4.7	6.6	13.0	0.012	12	0.01	17.1	34.2	3.1	Below detectable limits
BK3	4.3	6.5	12.6	0.012	11	0.01	17.1	51.3	2.3	Below detectable limits
BKT1	3.3	6.7	13.5	0.015	14	0.01	17.1	34.2	2.6	Below detectable limits
Optimal	>0	6.5-8.5	> 5	>0	100-400	0	100-400	100-400	<10	0

Table 1: Water Quality data for Manor Kill, Schoharie County, 4/6/08

Fish were found at all sites except for site 2 in the spring. During the summer data collection access to site 1 on Bear Kill, and the Bear Kill tributary could not be obtained. Site 2 and Site 10 were dry during the summer as well. Good numbers of both predators and prey were found at all other sites (Tables 2, 3).

Table 2: Fish Captured using backpack electrofisher on Manor Kill, Schoharie County, NY 4/27/08

Species	Site 1	Site 2	Site 3	Site 4	Site 5	Site 6	Site 7	Site 8	Site 9	Site 10	BK 1	BK 2	BK 3	BKT 1	Totals
Fathead Minnow	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1
White Sucker	4	0	1	2	0	5	1	1	0	0	0	0	0	0	14
Common Shiner	7	0	0	3	0	4	0	0	0	0	0	0	0	0	14
Longnose Dace	12	0	23	23	8	2	0	0	0	0	0	0	0	0	68
Blacknose Dace	96	0	104	110	4	91	80	3	1	1	4	5	10	0	509
Creek Chub	0	0	0	0	1	0	2	1	0	4	0	0	0	0	8
Slimy Sculpin	0	0	0	17	15	3	1	32	62	0	3	46	11	11	201
Brown Trout	0	0	1	0	1	2	0	3	7	0	4	7	2	1	28
Brook Trout	0	0	1	0	0	2	1	2	10	10	0	5	8	1	40
Totals	119	0	130	155	29	109	85	42	80	15	11	63	32	13	764

Species	Site 1	Site 2	Site 3	Site 4	Site 5	Site 6	Site 7	Site 8	Site 9	Site 10	BK 1	BK 2	BK 3	BKT 1	Totals
Brown Bullhead	0		0	0	0	0	0	0	1			0	0		1
Bluegill	0		0	0	0	0	0	0	0	D	No	4	8	S	12
White Sucker	1	D	6	2	0	3	36	1	0	R	⊳	0	0	Ac	49
Common Shiner	15	R	12	10	13	41	92	3	0	Y	ссе	0	0	6	186
Longnose Dace	15	Y	30	27	19	2	0	0	0		SS	0	0	SS	93
Blacknose Dace	142		104	176	137	261	80	49	6			53	45		1053
Creek Chub	14		2	5	3	8	115	10	0			0	0		157
Slimy Sculpin	0		0	0	12	6	1	16	79			70	18		202
Brown Trout	0		2	2	1	10	4	9	10			21	5		64
Brook Trout	0		2	0	0	1	2	5	8			35	72		125
Totals	187	0	158	222	185	332	330	93	104	0	0	183	148	0	1942

Table 3: Fish Captured using Backpack electrofisher on Manor Kill, Schoharie County, NY 9/15/08

The trout that were captured ranged in size from 61mm to 414mm. Most of the trout caught were less than 200mm (Fig. 2,3)

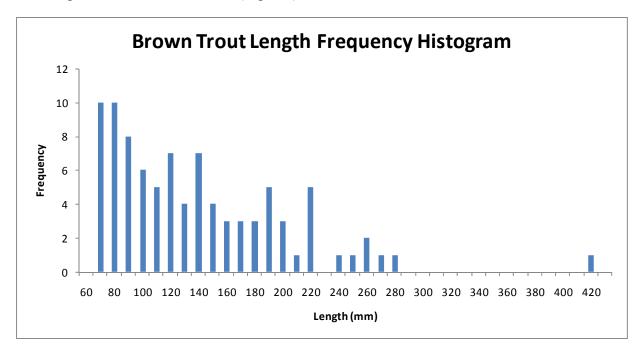


Fig. 2: Brown trout length frequency histogram from Manor Kill, Schoharie County, NY

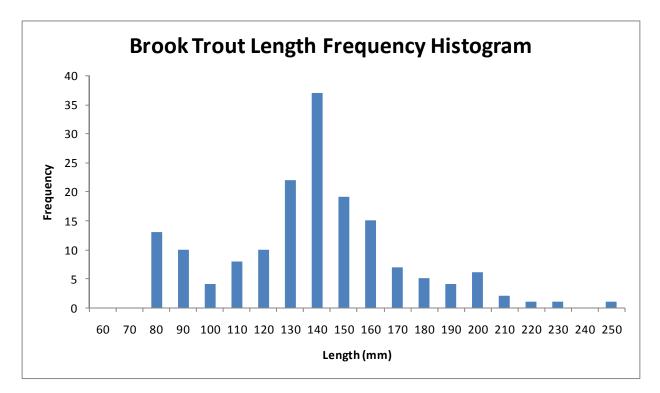


Fig. 3: Brook trout length frequency histogram from Manor Kill, Schoharie County, NY

Conclusions

The findings of this study show that there are no major chemical or physical water parameters that would limit the presence of the fish species. The alkalinity and hardness were below optimal range, but this is expected with the high volumes of runoff due to snow melt in the spring.

The distribution of fish is common for small order streams such as the Manor Kill. There is more diversity in the middle stream section. The upper section is dominated by cold water species such as trout and sculpins. The lower stream reaches are dominated by cool water species like minnows. The only fish that did not fit this model are a Fathead Minnow (*Pimephaies promelas*), a Brown Bullhead (*Ameiurus nebulosus*), and a small number of Bluegill (*Lepomis macrochirus*). All of these fish are warmwater species that were most likely introduced by sport fisherman.

Acknowledgements

We would like to thank Kevin Poole for his help in transportation, sampling, and his GIS imagery. The land owners for letting us have access to the stream. SUNY Cobleskill provided the equipment used. SUNY Cobleskill students who helped us sample. Town of Conesville who was the sponsor of this project.

Macroinvertebrate Survey of the Manor Kill, Conesville, NY: Summer 2008

Kevin Poole

Department of Fisheries and Wildlife, State University of New York, Cobleskill, N.Y. 12043 USA

Abstract: This study was conducted to determine a baseline of water quality assessment within the Manor Kill watershed. Macroinvertebrate indices along with water quality and physical parameters were used to assess biological impairments within the watershed. The results show a relatively stable watershed with an exception of the stream reach between Sites 5 and 7. The higher water temperatures (>20°C) along with the change in water quality impaction from slightly too moderately impacted has indicated there is reason to focus efforts on this stretch of stream. Further research should be conducted to determine practical applications for stream riparian zone restoration

Introduction

The Manor Kill watershed is an important resource to the Town of Conesville, NY and the City of New York. It provides drinking water, an agriculture water supply, and supports fishing activities along its length. In recent years, the need to address water quality has become increasingly important.

However, little research has been done on the Manor Kill watershed. The NYS DEC has conducted studies in the past, but they have been limited. There has never been such a comprehensive study of this magnitude.

This study was conducted to determine a baseline of water quality assessment using multiple indices. These included water quality parameters, physical parameters, and macroinvertebrate indices.

Materials and Methods

The Manor Kill is located in southern Schoharie County, New York State, in the foothills of the Catskill Mountains. This 2nd order stream empties into Schoharie Reservoir in the town of West Conesville. It mainly runs east to west with the Bear Kill tributary flowing in from the north. The stream can be reached from Rte. 30 by turning left on to State Route 990v.

The survey sites were selected based on a downstream/upstream water quality assessment for every major tributary located on the Manor Kill. These selections were based on the NYS DEC Stream Biomonitoring Unit's standard operating procedures for "Biological Impairment Criteria" (Bode et. al. 2002). Sites 8 and 10, on the Manor Kill and Bear Kill respectively, were the upper most sites that did not include a second site due to drought conditions. The following is a map of site locations within the Manor Kill watershed (Figure 1) along with Table 1 indicating GPS coordinates of the survey sites.

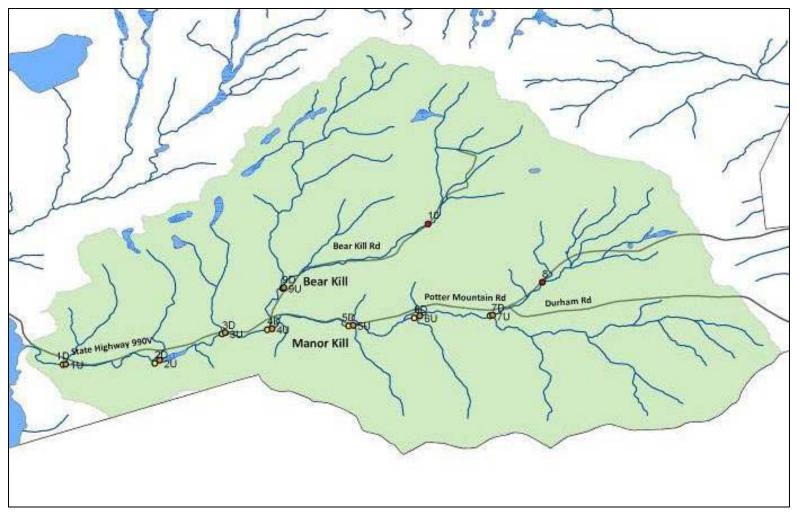


Figure 1: Map of the macroinvertebrate survey sites within the Manor Kill watershed: Summer 2008

Site	Water	Latitude	Longitude
1D	Manor Kill	42.376222	-74.423717
1U	Manor Kill	42.376292	-74.423017
2D	Manor Kill	42.376502	-74.402715
2U	Manor Kill	42.377237	-74.401700
3D	Manor Kill	42.383222	-74.387383
3U	Manor Kill	42.383502	-74.386683
4D	Manor Kill	42.384167	-74.377093
4U	Manor Kill	42.384378	-74.376007
5D	Manor Kill	42.384973	-74.358541
5U	Manor Kill	42.385148	-74.357526
6D	Manor Kill	42.386828	-74.343594

42.387318

42.387283

42.387493

42.394983

42.393618

42.393758

42.408320

-74.342369

-74.326338

-74.325778

-74.314437

-74.373662

-74.373312 -74.340444

6U

7D

7U

8

9D

9U

10

Manor Kill

Manor Kill

Manor Kill

Manor Kill

Bear Kill

Bear Kill

Bear Kill

Table 1: GPS coordinates of the macroinvertebrate survey sites within the Manor Kill watershed: Summer 2008

The sampling was done in the summer of 2008 on July 8th and 9th. The weather was partly cloudy with air temperatures ranging from low 80's to low 90's °F. The stream discharge conditions during the survey were below normal. It had not rained for weeks prior to the survey.

Initially, basic water quality parameters were taken at each site using an YSI 556 water analyzer which included temperature, conductivity, dissolved oxygen, and pH. Next, a standardized kick net ($800 \times 900\mu$ m) was used to sample macroinvertebrates within riffles for a length of five meters. The kick netter stood upstream of the net, kicking the substrate while moving downstream the length of the site for five minutes (Bode 2004). This was repeated at the upstream and downstream site of each tributary. Once these samples were collected, they were preserved in ethyl alcohol to be sorted back at the lab to their lowest taxa possible using a taxonomic key (Merritt et. al. 2008). Each taxa were then weighted using digital scale. Furthermore, physical parameters were taken at each site which included stream width, depth, velocity, embeddness, canopy cover, and substrate type.

Table 2:	water quanty	parame	ters taken at each surv	ey site within i		atersn	eu. Summer 2008.
Date	Time (mil)	Site	Velocity (ft/sec)	Temp (°C)	D.O. (mg/L)	рΗ	Conductivity (µs/cm)
07/08/08	9:25	1D	1.5	19.5	6.5	8.2	59
07/08/08	9:30	1U	3.5	19.4	5.8	7.8	58
07/08/08	10:30	2D	4.0	20.1	4.7	7.5	53
07/08/08	10:45	2U	4.0	20.5	5.6	7.3	54
07/08/08	11:25	3D	2.5	21.5	6.4	7.9	51
07/08/08	11:40	3U	4.0	21.3	5.1	8.1	50
07/08/08	12:40	4D	3.0	19.9	5.9	7.5	45
07/08/08	12:55	4U	2.5	20.6	6.9	7.7	49
07/08/08	13:20	5D	1.5	22.5	6.1	7.4	44
07/08/08	13:40	5U	1.0	22.1	6.3	7.2	41
07/09/08	9:20	6D	2.0	15.7	7.1	6.3	33
07/09/08	9:40	6U	2.0	15.5	6.2	6.7	30
07/08/08	14:15	7D	0.3	15.3	6.9	7.1	50
07/08/08	14:30	7U	1.0	16.4	7.3	6.9	49
07/09/08	10:35	8	2.0	13.3	7.1	7.8	32
07/09/08	11:50	9D	1.5	17.2	5.7	7.2	37
07/09/08	12:05	9U	2.0	18.8	5.6	7.6	39
07/09/08	12:40	10	1.0	17.3	5.4	7.5	32

Results Table 2: Water quality parameters taken at each survey site within the Manor Kill watershed: Summer 2008.

For the most part, water quality remained relatively constant throughout the Manor Kill watershed (Table 2). However, the water temperature hovered around the stress threshold (20°C) for trout species in the lower half of the watershed, particularly at Site 5. Furthermore, the conductivity was low throughout the watershed, indicating low nutrient levels. All other water quality parameters were within optimal range.

Table 3: Physical parameters taken at each survey site within the Manor Kill watershed: S	Summer 2008.
---	--------------

			Embeddedness		Substrate
Site	Stream Width (m)	Stream Depth (mm)	(%)	Canopy (%)	Туре
1D	11.2	160	10	20	Rock
1U	7.7	170	10	30	Rock
2D	3.5	160	40	10	Rubble/Gravel
2U	3.3	140	10	0	Rubble
3D	4.6	130	10	30	Rock/Rubble
3U	3.8	230	30	30	Rubble
4D	6.7	120	10	10	Rock
4U	2.9	110	20	50	Rock/Rubble
5D	4.5	60	35	0	Gravel
5U	3.4	190	40	0	Rubble/Gravel
6D	2.5	100	25	0	Gravel
6U	2.3	80	20	0	Gravel
7D	1.5	40	40	40	Rock/Rubble
7U	4.0	70	20	50	Rock/Rubble
8	3.7	85	15	80	Rock
9D	4.8	70	10	60	Rubble
9U	2.3	70	30	30	Rubble
10	2.7	60	10	95	Rock

The embeddedness (measure of how deeply rocks are buried in the stream substrate) was, for the most part, higher around Sites 5-7 (Table 3). The substrate at these sites was typically of a gravel consistency. Furthermore, the canopy was completely absent from Sites 5 and 6. These physical parameters show below optimal characteristics for this reach of the watershed.

Site	Species Richness	EPT Richness	EPT Index (% by Weight)	Hilsenhoff Biotic Index	Percent Model Affinity
1D	18	10	38	4.11	63
1U	20	11	54	4.75	75
2D	15	7	39	4.48	61
2U	11	8	52	3.42	60
3D	18	10	50	2.99	70
3U	18	10	92	3.07	50
4D	12	6	16	4.60	78
4U	17	10	83	3.81	56
5D	11	5	61	2.95	61
5U	14	7	31	5.74	42
6D	8	6	24	4.96	48
6U	7	5	71	4.08	39
7D	4	2	98	4.00	15
7U	13	10	52	2.28	67
8	12	9	66	1.74	62
9D	15	11	56	3.96	56
9U	11	8	99	2.47	61
10	11	9	98	3.26	57

Table 4: Macroinvertebrate indices for the Manor Kill watershed: Summer 2008.

The water quality indices calculated above (Table 4), were based from NYS DEC Stream Biomonitoring Unit's Biological Assessment Profile (Bode et. al. 2002). These are common macroinvertebrate community indices used to indicate water quality impact statuses. Furthermore, the EPT Index calculated by taxa weight (Appendix I), was included to show that all sites had high abundances of EPT organisms. EPT represents orders of Ephemeroptera, Plecoptera, and Trichoptera which typically indicates healthier water quality conditions.

Site	WQ Scores	WQ Impact
1D	7.1	Slightly Impacted
1U	7.2	Slightly Impacted
2D	6.0	Slightly Impacted
2U	5.9	Slightly Impacted
3D	7.4	Slightly Impacted
3U	6.7	Slightly Impacted
4D	5.9	Slightly Impacted
4U	6.6	Slightly Impacted
5D	5.7	Slightly Impacted
5U	4.9	Moderately Impacted
6D	4.7	Moderately Impacted
6U	4.4	Moderately Impacted
7D	3.2	Moderately Impacted
7U	7.0	Slightly Impacted
8	6.5	Slightly Impacted
9D	6.4	Slightly Impacted
9U	6.3	Slightly Impacted
10	5.8	Slightly Impacted

Table 5: Macroinvertebrate water quality impact scores for the Manor Kill: Summer 2008.

The results of the water quality scores indicate that most of the Manor Kill watershed had slightly impacted water quality. However, Sites 5-7 indicates that there was moderately impacted water quality at this reach of the watershed.

Discussion

This survey was conducted to determine a baseline for water quality within Manor Kill watershed. The results are significant showing a relatively stable watershed with an exception of the stream reach between Sites 5 and 7.

The higher water temperatures (>20°C) along with the change in water quality impaction from slightly too moderately impacted has indicated there is reason to focus efforts on this stretch of stream. Also, the macroinvertebrate species richness and EPT richness drops significantly. The lack of canopy corresponding with a poor riparian zone increases the chance of more sedimentary input into the stream which is shown by an increase of gravel substrate and embeddedness.

The Manor Kill between Sites 5 and 7 shows the most altered conditions relating to stream side activities. This stretch consists of farm fields extending into the riparian zones and a rock quarry just upstream. These conditions could contribute to the degraded water quality conditions found along this stretch during the study.

Further research should be conducted to determine practical applications for stream riparian zone restoration. The continued degradation along this stretch on the Manor Kill could lead to more complicated remedies in the future.

Appendix I

Site	Order	Suborder	Family	Subfamily	Genus	Species	Count	Weight (gm)
1D	Coleoptera		Psephenidae		Psephenus		24	0.09
1D	Coleoptera		Elmidae				13	0.02
1D	Diptera		Tipulidae		Hexatoma		17	2.00
1D	Diptera		Tipulidae		Antocha		1	0.01
1D	Diptera		Tipulidae				7	0.01
1D	Diptera		Chironomidae				18	0.02
1D	Diptera		Chironomidae				3	0.01
1D	Ephemeroptera		Leptohyphidae				4	0.02
1D	Ephemeroptera		Oligoneuriidae				5	0.03
1D	Ephemeroptera		Neoephemeridae				2	0.01
1D	Ephemeroptera		Baetidae				1	0.02
1D	Ephemeroptera		Baetidae				2	0.01
1D	Megaloptera		Corydalidae		Nigronia		1	0.02
1D	Plecoptera		Leuctridae				2	0.01
1D	Plecoptera		Perlidae		Claasenia		11	0.85
1D	Trichoptera		Hydropsychidae		Hydropsyche		6	0.08
1D	Trichoptera		Polycentropodidae		Nyctiophylax		3	0.28
1D	Trichoptera		Polycentropodidae		Neuroclpsis		3	0.01
1U	Coleoptera		Psephenidae		Dicranopsclaphus		2	0.01
1U	Coleoptera		Elmidae				7	0.01
1U	Coleoptera		Scirtidae				1	0.01
1U	Decapoda		Cambaridae	Cambarinae	Orconectes	rusticus	1	0.24
1U	Diptera	Brachycera	Cyclorrhaphous				6	0.01
1U	Diptera	Brachycera	Orthorrhaphous				7	0.01
1U	Diptera		Chironomidae				11	0.01
1U	Ephemeroptera		Potamanthidae		Anthopotamus		2	0.01
1U	Ephemeroptera		Baetiscidae				4	0.01
1U	Ephemeroptera		Leptohyphidae				3	0.03
1U	Ephemeroptera		Baetidae				5	0.02
1U	Ephemeroptera		Ameletidae		Ameletus		1	0.01
1U	Ephemeroptera		Leptophlepiidae		Traverella		1	0.01
1U	Megloptera		Corydalidae		Corydalus	Latreille	1	0.08
1U	Odonota	Anisoptera	Libellulidae		Erythemis		1	0.07
1U	Plecoptera		Pteronarcyidae		Pteronarcella	badia	1	0.05
1U	Plecoptera		Perlidae				1	0.01
1U	Trichoptera		Hydroptilidae		Hydroptilla		4	0.02
1U	Trichoptera		Phryganeidae		· ·		3	0.02
1U	Trichoptera		Polycentropodidae				3	0.01

Table 6: Macroinvertebrate taxa found at each survey site on the Manor Kill: Summer 2008.

Site	Order	Suborder	Family	Subfamily	Genus	Species	Count	Weight (gm)
2D	Coleoptera		Eluichadidae		Stenocolus		2	0.02
2D	Coleoptera		Ptilodactylidae		Anchytarsas		2	0.01
2D	Coleoptera		Elmidae				17	0.01
2D 2D	Diptera Diptera	Nematocera	Tipuldidae Blephariceridea		Hexatoma Blepharicera	Marcquart	11 3	2.49 0.37
2D 2D	Diptera	Nomatocera	Chironomidae	Pentoneurini	ыерпансега	Marcquart	5 12	0.37
2D	Ephemeroptera	Nonacocciu	Baetidae	i chtoneurin			12	0.02
2D	Ephemeroptera		Baetisidae		Baetisca		1	0.01
2D	Ephemeroptera		Potamanthidae		Anthopotomas		1	0.03
2D	Megaloptera		Corydalidae		Chauliodes	Latreille	2	0.17
2D	Odonata		Coenagrionidae		Amphiagrion		5	0.30
2D	Plecoptera		Perlidae		Claassenio		3	0.15
2D 2D	Trichoptera		Polycentropodidae		Neureclipsis		17 6	0.39 0.66
2D 2D	Trichoptera		Limnephilidae Brachycentridae				0	0.00
20	Trichoptera		,		Deenhonus		2	0.03
20 2U	Coleoptera		Psephenidae		Psephenus			0.05
20 2U	Coleoptera		Elmidae				12	2.30
20 20	Diptera		Tipulidae		Hexatoma		7	0.11
	Ephemeroptera		Baetidae				8	
20	Ephemeroptera		Leptohyphidae				24	1.09
2U	Ephemeroptera		Heptageniidae				1	0.03
2U	Plecoptera		Perlidae		Claassenia		6	0.04
2U	Plecoptera		Perlidae		Perlesta		1	0.01
2U	Trichoptera		Polycentropodidae		Nyctiophylax		1	0.10
20	Trichoptera		Polycentropodidae		Neuroeclipsis		4	0.05
20	Trichoptera		Hydropsychidae		Hydropsyche		47	1.09
3D	Coleoptera		Psephenidae		Psephenus		1	0.01
3D	Coleoptera		Elmidae				3	0.02
3D	Decapoda		Cambaridae	Cambarinae	Orconectes	rusticus	1	6.03
3D	Ephemeroptera		Polymitarcyidae		Ephoron		3	1.71
3D	Ephemeroptera		Baetidae				7	0.03
3D	Ephemeroptera		Leptohyhidae				17	0.04
3D	Diptera		Tipulidae		Hexatoma		1	0.07
3D	Diptera		Chironomidae				6	0.07
3D	Diptera		Tipulidae		Antocha		3	0.23
3D	Megaloptera		Corydatidae		Nigroriia		1	0.26
3D	Odonata	Anisoptera	Gomphidae		Stylogompnus		2	0.21
3D	Plecoptera		Perlidae		Claassenia		13	0.75
3D	Plecoptera		Pteronarcyidae		Pteronarcys		3	0.57
3D	Plecoptera		Chloroperlidae				3	0.03
3D	Trichoptera		Hydropsychidae		Hydropsyche		11	0.21
3D	Trichoptera		Polycentripodidae		Neureclipsis		3	0.03
3D	Trichoptera		Limnephilidae				1	0.87
3D	Trichoptera		Limnephilidae				3	0.93

Site	Order	Suborder	Family	Subfamily	Genus	Species	Count	Weight (gm)
3U	Coleoptera		Psephenidae		Psephenus		3	0.02
3U	Coleoptera		Elmidae				1	0.01
3U	Decapoda		Cambaridae	Cambarinae	Orconectes	rusticus	1	0.03
3U	Diptera		Tipulidae		Hexatoma		16	0.04
3U	Diptera		Chironomidae		A set a alta		4	0.06
3U 3U	Diptera Enhomoroptora		Tipulidae Polymitarcyidae		Antocha Ephoron		2 1	0.19 1.62
3U	Ephemeroptera Ephemeroptera		Baetidae		Ephoron		3	0.02
3U	Ephemeroptera		Leptohyhidae				12	0.02
3U	Odonata	Anisoptera	Gomphidae		Stylogomphus		2	0.21
3U	Odonata	Anisoptera	Gomphidae		Lanthus		6	0.03
3U	Plecoptera		Perlidae		Claassenia		9	0.67
3U	Plecoptera		Pteronarcyidae		Pteronarcys		3	0.97
3U	Plecoptera		Chloroperlidae				1	0.02
3U	Trichoptera		Hydropsychidae		Hydropsyche		21	0.54
3U	Trichoptera		Polycentripodidae		Neureclipsis		5	0.05
3U	Trichoptera		Limnephilidae				3	1.12
3U 4D	Trichoptera		Limnephilidae Elaichadidae		Stenocolas		2 4	0.29 0.02
4D 4D	Coleoptera Coleoptera		Elmidae		Stenocolas		4	0.02
4D	Coleoptera		Scirtidae				4	0.01
4D	Diptera		Tipulidae		Hexatoma		6	1.25
4D	Diptera	Nematocera	Chironomidae	Pentanearini			31	0.03
4D	Ephemeroptera		Baetidae				17	0.08
4D	Ephemeroptera		Potomanthidae		Anthopotama		2	0.02
4D	Ephemeroptera		Leptohyhidae				1	0.01
4D	Megaloptera		Corydalidae		Chauliodes	Lateille	2	0.04
4D	Plecoptera		Perlidae		Classenia		4	0.03
4D	Trichoptera		Polycentropodidae		Neuroclipsis		2	0.03
4D	Trichoptera		Hydropsychidae				4	0.05
4U	Coleoptera		Psephenidae		Psephenus		5	0.04
4U	Coleoptera		Scirtidae				2	0.02
4U	Diptera		Chironomidae				2	0.01
4U	Diptera		Tipulidae		Hexatoma		4	0.37
4U	Diptera		Tipulidae		Antocha		1	0.01
4U	Ephemeroptera		Baetidae				3	0.01
4U	Ephemeroptera		Oligoneuridae				4	0.03
4U	Ephemeroptera		Leptohyphidae				13	0.11
4U	Ephemeroptera		Heptageniidae				1	0.01
4U	Megaloptera		Corydalidae		Nigronia		3	0.06
4U	Megaloptera		Corydatidae		Nigronia		1	0.04
4U	Plecoptera		Perlidae		Classesnia		9	0.91
4U	Tricoptera		Polycentropodidae		Neureclipsis		19	0.14
4U	Tricoptera		Glossosomatidae				1	0.08
4U	Tricoptera		Hydropsychidae		Hydropsyche		23	0.56
4U	Tricoptera		Polycentropodidae		Nytiophylax		3	0.23
4U	Tricoptera		Limnephilidae				2	0.03

Site	Order	Suborder	Family	Subfamily	Genus	Species	Count	Weight (gm)
5D	Coleoptera		Psephenidae		Psephenus		1	0.01
5D	Coleoptera		Elmidae				1	0.01
5D	Diptera		Tipulidae		Hexatoma		8	0.37
5D 5D	Diptera Diptera		Chironomidae Tipulidae		Antocha		4 27	0.01 0.04
5D	Ephemeroptera		Leptohyphidae		Antocha		27	0.04
5D	Ephemeroptera		Baetidae				3	0.02
5D	Odonata	Anisoptera	Gomphidae				2	0.24
5D	Plecoptera		Perlidae		Claassenia		3	0.09
5D	Plecoptera		Leuctridae				1	0.01
5D	Tricoptera		Hydropsychidea		Hydropsyche		14	0.05
5U	Decapoda		Cambaridae	Cambarinae	Orconectes		2	0.42
5U	Diptera		Tipulidae		Hexatoma		2	0.25
5U	Diptera	Nematocera	Chironomidae	Pentaneurini			63	0.10
5U	Ephemeroptera		Euthyplociidae		Euthyplecia	Hecuba	1	0.05
5U	Ephemeroptera		Polymitarcyidae		Ephoron		1	0.01
5U	Ephemeroptera		Potamanthidae		Anthopotamus		1	0.02
5U	Ephemeroptera		Baetidae				4	0.02
5U	Ephemeroptera		Leptohyphidae				1	0.03
5U	Megaloptera		Corrdalidae		Chaaliodes	Latreille	1	0.02
5U	Odonata		Coenagrionidae		Chromagrion		1	0.12
5U	Odonata		Coenagrionidae		Telebasis		1	0.03
5U	Odonata		Coenagrionidae		Enallagmo		1	0.02
5U	Plecoptera		Perlidae		Classenia		1	0.01
5U	Trichoptera		Polycentropodidae		Neureclipsis		1	0.01
6D	Diptera		Tipulidae		Hexatoma		10	0.88
6D	Diptera		Chironomidae	Pentaneurini			73	0.07
6D	Ephemeroptera		Baetidae				7	0.04
6D	Ephemeroptera		Ephomerellidae		Attenella		3	0.02
6D	Plecoptera		Perlidae		Aceroneuria		1	0.15
6D	Plecoptera		Leuctridae		Perlomyia		7	0.01
6D	Trichoptera		Hydropsychidea		Hydropsyche		1	0.01
6D	Trichoptera		Polycentropodidae		,		2	0.07
6U	Diptera	Nematocera	Chironemidae	Pentaneurini			- 38	0.04
6U	Diptera	Nematotera	Tipulidae	rentanearm	Hexatoma		1	0.01
6U	Ephemeroptera		Leptophlebiidae		nexatorna		4	0.03
6U	Ephemeroptera		Baetidae				1	0.03
6U	Ephemeroptera		Baetiscidae		Baetisca		1	0.02
6U								0.02
	Plecoptera		Leuctridae		Perlomyia		16	0.05
6U 7D	Trichoptera		Polycentropodidae				1	
7D	Diptera	Nematocera	Tipulidae		Hexatoma		2	0.34
7D	Diptera		Chironomidae	Pentaneurini			2	0.01
7D	Ephemeroptera		Leptohyphidae				1	0.02
7D	Tricoptera		Limnephilidae				107	22.41

Site	Order	Suborder	Family	Subfamily	Genus	Species	Count	Weight (gm)
7U	Coleoptera		Elmidae				1	0.01
7U	Diptera		Tipulidae		Hexatoma		11	1.03
7U	Diptera		Chironomidae				1	0.01
7U	Ephemeroptera		Baetidae				8	0.03
7U	Ephemeroptera		Leptohyphidae				28	0.21
7U	Ephemeroptera		Neoephemeridae				1	0.01
7U	Ephemeroptera		Heptageniidae				1	0.01
7U	Plecoptera		Perlidae		Claassenia		10	0.43
7U	Plecoptera		Pteronareyidae		Pteronarcys		2	0.22
7U	Plecoptera		Leuctridae				14	0.03
7U	Tricoptera		Hydropsychidae		Hydropsyche		7	0.13
7U	Tricoptera		Piolycentropodidae		Neureclipsis		4	0.02
7U	Tricoptera		Phryganeidae				2	0.06
8	Coleoptera		Elmidae				3	0.01
8	Diptera		Tipulidae				4	0.86
8	Diptera		Tipulidae				1	0.01
8	Ephemeroptera		Ephemerellidae				25	0.09
8	Ephemeroptera		Baetidae				9	0.04
8	Ephemeroptera		Leptophlebiidae				1	0.01
8	Plecoptera		Pteronerctidae		Pteronarcys		7	0.82
8	Plecoptera		Perlidae		Claassenia		15	0.50
8	Plecoptera		Leuctridae				10	0.01
8	Plecoptera		Perlodidae				7	0.02
8	Tricoptera		Hydropsychidae		Hydropsyche		5	0.10
8	Tricoptera		Limnephilidae		, , ,		3	0.14
9D	Coleoptera		Eulichadidae		Stenocolas		2	0.01
9D	Coleoptera		Elmidae				1	0.05
9D	Diptera		Tipulidae		Hexatoma		5	1.11
9D	Diptera		Chironomidae				7	0.01
9D	Ephemeroptera		Ephemerellidae		Attenella		13	0.10
9D	Ephemeroptera		Leptophelbiidae				2	0.01
9D	Ephemeroptera		Baetidae				1	0.01
9D	Plecoptera		Perlidae				8	0.42
9D	Plecoptera		Pteronarcyidae		Pteronarcys		2	0.37
9D	Tricoptera		Polycentropodidae		Nyctiophylax		2	0.19
9D	Tricoptera		Hydropsychidae		Hydropsyche		1	0.02
9D	Tricoptera		Polycentropodidae		Neureclipsis		21	0.04
9D	Tricoptera		Leuctridae		Perlomyia		1	0.03
9D	Tricoptera		Polycentropodidae		Cyrennclus		6	0.21
9D	Tricoptera		Limnephilidae		,		3	0.13

Site	Order	Suborder	Family	Subfamily	Genus	Species	Count	Weight (gm)
9U	Diptera		Tipulidae				2	0.01
9U	Diptera		Chironomidae				3	0.01
9U	Ephemeroptera		Baetidae				4	0.03
9U	Ephemeroptera		Ephemerellidae				61	0.65
9U	Ephemeroptera		Leptophlebiidae				2	0.01
9U	Ephemeroptera		Ephemerellidae		Attenella		7	0.09
9U	Megaloptera		Corydatidae		Nigronia		1	0.06
9U	Plecoptera		Perlidae		Claassenia		4	0.20
9U	Plecoptera		Leuctridae				3	0.02
9U	Tricoptera		Polycentropodidae		Neuroclipsis		22	0.05
9U	Tricoptera		Hydropsychidae		Hydropsyche		7	0.24
10	Coleoptera		Scirtidae				1	0.01
10	Coleoptera		Eulichadidae		Stenocolus		1	0.01
10	Ephemeroptera		Ephemerellidae		Attenella		3	0.01
10	Ephemeroptera		Ephemerellidae				31	0.21
10	Ephemeroptera		Leptophlebiidae				5	0.07
10	Plecoptera		Perlidae				6	0.14
10	Plecoptera		Leuctridae				1	0.01
10	Tricoptera		Polycentropodidae		Cyrenellus		3	0.07
10	Tricoptera		Polycentropodidae		Neureclipsis		23	0.17
10	Tricoptera		Leuctridae		Perlomyia		4	0.04
10	Tricoptera		Polycentropodidae		Cyrennclus		11	0.11

Acknowledgements

I would like to thank the technical staff for their work and Mark Cornwell for his guidance. Also, thanks to the Town of Conesville for their funding of the project.

Literature Cited

Bode, R.W. New York (State). Stream Biomonitoring Unit. 2004. 30 year trends in water quality of rivers and streams in New York State based on macroinvertebrate data, 1972-2002. 384 p.

Bode, R.W., M.A. Novak, L.E. Abele, D.L. Heitzman, and A.J. Smith. 2002. *Quality Assurance work plan for biological stream monitoring in New York State*. 122 p.

Merritt, R.W., K.W. Cummins, and M.B. Berg. 2008. *An introduction to the aquatic insects of North America*. Fourth Edition.