Slope Stability Report For Broadstreet Hollow Stream Realignment

Prepared For:

Kaaterskill Engineering

Prepared By:

Daniel G Loucks, PE NYSPE 068389

8 May, 2000

INTRODUCTION:

The slope stability investigation for the proposed Realignment of the Broadstreet Hollow Stream has been completed.

The scope of my work consists of an analysis of the slope instability adjacent to the stream and recommendations for improving the stability of the failed slope. I have also provided foundation recommendations for the proposed retaining wall.

I have completed four site specific slope stability analyses where the existing slopes have failed. Detailed results for analysis of these areas can be found in the appendix of this report.

If desired by the client, I will complete any necessary additional work including a more detailed groundwater investigation to estimate groundwater drawdown from the wells and if additional wells are required.

The purpose of this report is to describe the investigation conducted and results obtained; to analyze and interpret the data obtained; and to make recommendations for improving the slope stability and for the design of foundations for the proposed retaining wall.

The slope stability recommendations contained in this report can be considered final unless additional work is performed to alter these recommendations. This report does not address any other aspects of the project such as general grading and erosion control.

FIELD INVESTIGATION PROCEDURES:

The borings were performed with an ATV-mounted, hollow-stem auger-drilling rig.

The borings were extended by means of six-inch O.D., hollow-stem, augers.

Representative samples were obtained from the boring holes by means of the split-spoon sampling procedure performed in accordance with ASTM D 1586. Crossed circles on the soil boring logs have indicated the standard penetration values obtained from this procedure, graphically.

Representative samples of the clay and silt soils were obtained by means of thin-wall, tube, sampling performed in accordance with ASTM D 1587-67.

Soil samples obtained from these procedures were examined in the field, sealed in containers, and shipped to the laboratory for further examination, classification and testing, as applicable.

A soils engineer visited the site to observe the surface conditions on the slopes and adjacent areas.

The surface soils and condition of the trees along the slope were noted.

LABORATORY INVESTIGATION:

All samples were examined in the laboratory by a soils engineer and classified according to the Unified Soil Classification System. In this system, the soils are visually classified according to texture and plasticity. The appropriate group symbol is indicated on the soil boring logs.

Samples exhibiting significant percentages of fine-grained soils or organic materials were subjected to moisture content testing. This testing was performed in accordance with ASTM D 2216-71. Solid black circles on the soil boring logs indicate the results of these tests, graphically.

Samples exhibiting significant cohesion were tested with a calibrated, spring-loaded, penetrometer. This test is used to estimate the unconfined compressive strength of the soil sample by measuring the soil's resistance to the penetration of the penetrometer needle. The results of these tests are indicated, graphically, on the boring logs by open circles with dashed lines on each side of the circle.

A Triaxial Permeability Test was performed on a representative sample obtained by the thin walled tube sampling procedure. Results of the test can be found in the appendix of the report.

Sieve Analyses were performed on representative samples in accordance with ASTM Specification D 422. These tests were performed to verify the visual soil classifications and to design the filter sand that is required around the well screen.

The site soil parameters have been conservatively estimated based on past experience with similar soils. The angle of friction of the soils, total unit weight of the soils and cohesion has been shown on the cross sections of geometry in the appendix.

Rock or a hard strata have been assumed to be deep.

SITE CONDITIONS:

The failed slope area is wooded and is on the north side of the existing stream just upstream of the Timberlake Road bridge.

The slope of the ground surface in the area that failed varies from between $4.0:1.0\ (H:V)$ and $7.0:1.0\ (H:V)$. The slopes to the north and east are at similar slopes. The slope to the west is as steep as $2.5:1.0\ (H:V)$. These other areas show no significant signs of slope instability.

It is my understanding that the stream bottom appears to rise up and islands are formed after the failed slope moves.

SUBSURFACE CONDITIONS:

The specific subsurface conditions encountered at each boring location are indicated on the individual soil boring logs. However, to aid in the evaluation of this data, I have prepared a generalized description of the soil conditions based on the boring data.

The borings show an upper layer of sand, gravel and silt that extends to between 7.0 and 9.0 feet. This layer is loose to very dense. In borings 1 and 3 this upper layer is old fill that was placed after the last major stream erosion.

Below the sand, gravel and silt is a layered silt and clay. This layered soil extends to between 13.0 and 30.0 feet and is loose/soft.

In boring 1 a layer of fine sand and silt that changed into glacial till was encountered under the clay layer to a depth of 30 feet.

In borings 2 and 3 layers of clean sand were encountered at between 26 and 30 feet.

GROUNDWATER CONDITIONS:

The water levels have been indicated on the individual boring logs. Boring 2 encountered a layer of clean sand under the upper clay layer. An observation well was placed in this sand layer and the groundwater level in the well was at approximately 2.1 feet below the existing ground surface. This condition would cause artesian conditions in the stream.

Perched groundwater tables may occur at higher elevations in the soil profile due to groundwater being retained by layers or lenses of silt or clay soils.

Some fluctuation in hydrostatic groundwater levels and perched water conditions should be anticipated with variations in the seasonal rainfall and surface runoff.

ANALYSIS AND RECOMMENDATIONS:

Slope Stability:

The failed slope area was visually investigated and analyzed using a computer-aided stability analysis and my own experience. The procedure used to determine possible ways of improving the stability of the failed slope area is as follows:

- 1. The existing slopes were considered to have a factor of safety against sliding of less then 1.0. This is indicated by evidence of creep movement and past failures. Soil strength parameters were assumed based on my experience in similar soils. Groundwater levels were established to represent the historical high groundwater conditions resulting in the slopes having this factor of safety of less then 1.0.
- Using the same soil parameters and groundwater levels as obtained above, the representative cross sections of the slopes were investigated by computer analysis. In each case, changes in the grading and/or groundwater levels were made until the area had a factor of safety of at least 1.3 against shear failure.

The computer analysis and observation well data indicate that the slope failure was likely caused by excess water pressure that exists in the sand layer below the bottom of the stream. This water pressure causes the sloping area to move toward the stream when the pressure becomes too large and/or when the stream bottom has eroded away enough soil to cause instability of the slope.

I recommend that erosion control/fill be placed in the bottom of the stream and relief wells be installed to improve the stability of the failed sloping area.

I understand that a minimum of 2.0 feet of erosion control/fill is proposed in the bottom of the stream. This erosion control is required in the bottom of the stream to reduce the amount of erosion. I also recommend that a layer of geotextile (Amoco 4512)

or equal) be placed under the rip-rap in this portion of the stream.

If no erosion control is taken, the existing stream will continue to cut and increase the potential of slope instability. The slopes will tend to maintain their present degree of slope. If the toe elevation is lowered, the top of the slope will eventually be eroded or sheared back until the same slope is recovered as prevailed prior to the toe erosion.

Along with the 2.0 feet of erosion control/fill, I recommend that a minimum of three (3) relief wells be installed to reduce the groundwater pressure in the sand layer below the stream. My analysis shows that if the water pressure is reduced by approximately 250 psf or approximately 4.0 feet of head that the factor of safety against sliding will be approximately 1.5.

The relief wells should be placed approximately as indicated on the diagram located in the appendix of the report. Additional relief wells may be required if the initial wells do not lower the pressure in the sand layer and further instability occurs. The existing wells could then be used to calculate approximately how many additional wells would be required.

I have included a typical cross section sketch of the recommended relief well design. As the sketch shows the well screen should be installed at approximately between 24 and 34 feet below the ground surface. The actual distance will vary depending on the depth of the existing sand layer. The well screen should have a maximum slot size of 10-slot and the gravel/sand pack should be composed of sand having a grain size of 1.0 mm. The remaining portion of the well design is shown on the sketch.

The well should be installed by advancing a minimum of a 14 inch diameter straight sided steel casing to a depth of approximately 2.0 feet below the bottom of the well screen. The inside of the casing should be cleaned out while advancing to identify the location of the sand layer. Augered flighted casing should not be used. After the proper depth is reached the well screen, riser, tee, gravel pack, bentonite seal and drain pipe should be installed. The drain pipe should be designed to drain to the existing stream.

All wells should be developed to provide proper performance.

Differences in the slopes from those described by the map provided may affect the recommendations contained in this report.

Retaining Wall Recommendations:

I recommend that the proposed retaining wall be supported by spread footing foundations resting on virgin, inorganic, soils or on controlled fill which, in turn, rests on these virgin materials. Footings can be designed for a maximum, net, allowable soil bearing pressure of 1500 psf.

A minimum footing width of 2.5 feet is recommended for load bearing strip footings. Footings should have a minimum embedment of 2.0 feet below the bottom of the stream to develop the bearing value of the soils. Additional depth may be required to prevent scour.

The retaining wall should have a drain tile placed around the interior base of the wall. The drain tile should be a minimum of 4 inches in diameter, surrounded by a minimum of 6 inches of washed sand or crushed stone wrapped with a filter fabric (Amoco 4545 or equal). The drain tile should drain to daylight. If crushed stone is used as backfill no drain is required.

The wall should then be backfilled with a controlled, well graded, free-draining granular material or crushed stone. The material should extend away from the wall a horizontal distance of two-thirds the height of the fill being placed. The upper 1 foot of material should be a fairly impermeable material to shed surface water. If crushed stone is used a layer of geotextile (Amoco 4508 or equal) should be placed between the crushed stone and any soil.

If these procedures are used, a lateral soil pressure of 40 psf per foot of retained soil can be used for design of the wall. This active lateral soil pressure is based on a moist unit weight of 125 pcf and an angle of internal friction of 32 degrees. A coefficient of base sliding of 0.3 can also be used for design. If crushed stone is used a lateral soil pressure of 20 psf per foot of stone can be used for the design.

Broadstreet Hollow Stream Alignment File No.601

CONTENTS OF APPENDIX:

- 1. General Notes
- 2. Boring Location Diagram
 - Boring Logs
 - 4. Test Results
- 5. Cross-section of Geometry
- 6. Relief Well Location Diagram
 - 7. Relief Well Cross- Section
- 8. Unified Soil Classification System
 - 9. Soil Use Chart
 - 10. General Qualification

GENERAL NOTES

DRILLING & SAMPLING SYMBOLS

SS: Split-Spoon— 13/4" I.D., 2" O.D., except where noted

S : Shelby Tube — 2" O.D., except where noted

PA : Power Auger Sample

DB : Diamond Bit — NX: BX: AX: CB : Carboloy Bit — NX: BX: AX:

OS : Osterberg Sampler - 3" Shelby Tube

HS: Housel Sampler
WS: Wash Sample
FT: Fish Tail
RB: Rock Bit
WO: Wash Out

"Standard "N" Penetration: Blows per foot of a 140 pound hammer falling 30 inches on a 2 inch OD split spoon, except where noted

WATER LEVEL MEASUREMENT SYMBOLS

WL: Water Level
WCI: Wet Cave In
DCI: Dry Cave In
WS: While Sampling
WD: While Drilling

BCR: Before Casing Removal ACR: After Casing Removal

AB : After Boring

Water levels indicated on the boring logs are the levels measured in the boring at the times indicated. In pervious soils, the indicated elevations are considered reliable ground water levels. In impervious soils the accurate determination of ground water elevations is not possible in even several day's observation, and additional evidence on ground water elevations must be sought.

CLASSIFICATION

equivalent

COHESIONLESS SOILS

"Trace" : 1% to 10%

"Trace to some" : 10% to 20%

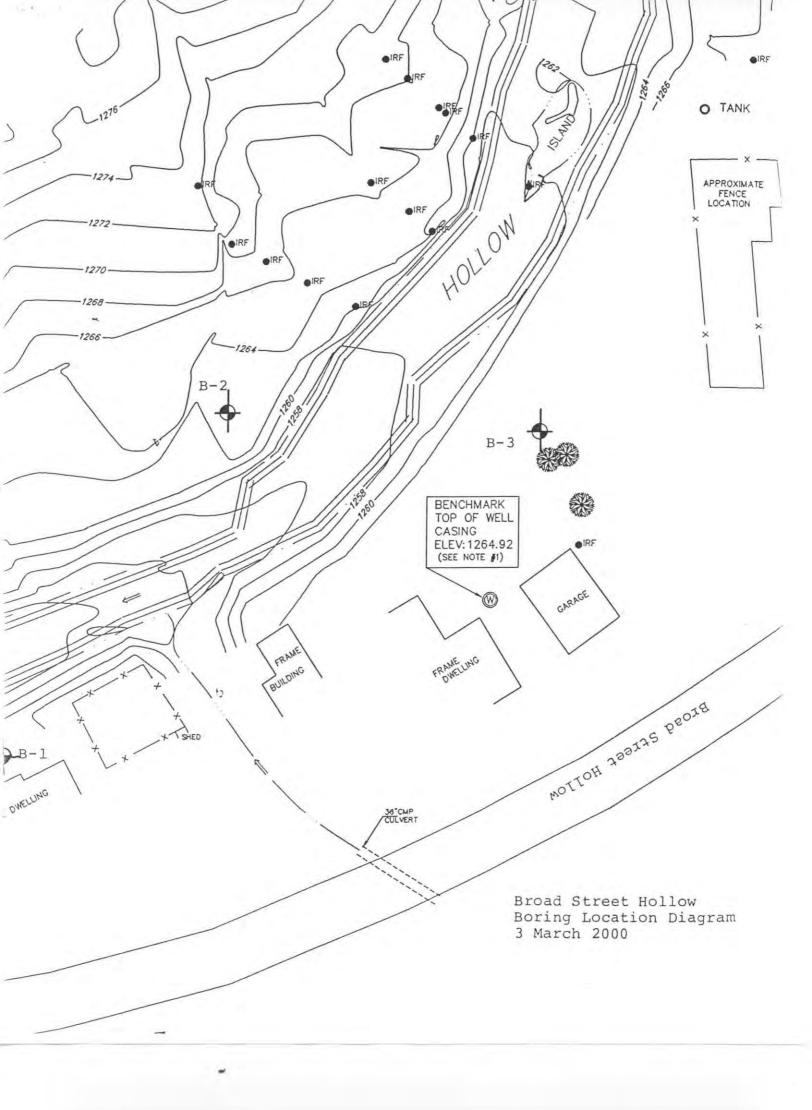
"Some" : 20% to 35%

"And" : 35% to 50%

Loose : 0 to 9 Blows

Medium Dense : 10 to 29 Blows

Dense : 30 to 59 Blows


Dense : 30 to 59 Blows

Very Dense : ≥ 60 Blows

COHESIVE SOILS

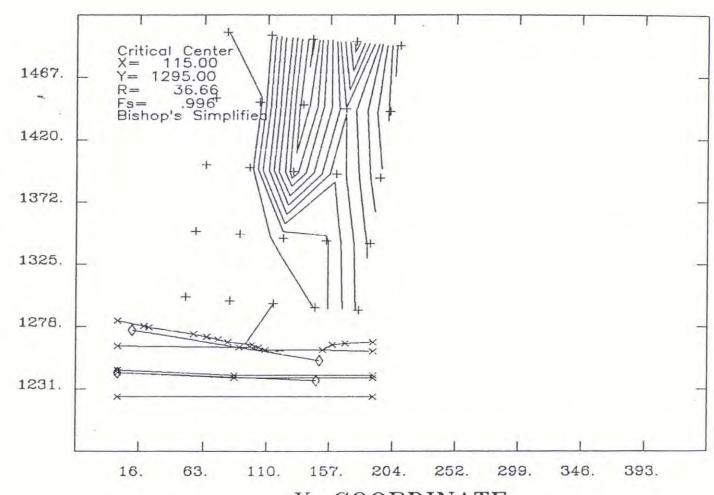
If clay content is sufficient so that clay dominates soil properties, then clay becomes the principle noun with the other major soil constituent as modifiers: i.e., silty clay. Other minor soil constituents may be added according to classification breakdown for cohesionless soils; i.e., silty clay, trace to some sand, trace gravel.

 $\begin{array}{lll} \text{Soft} & : & 0.00 - 0.59 \ \text{tons/ft}^2 \\ \text{Medium} & : & 0.60 - 0.99 \ \text{tons/ft}^2 \\ \text{Stiff} & : & 1.00 - 1.99 \ \text{tons/ft}^2 \\ \text{Very Stiff} & : & 2.00 - 3.99 \ \text{tons/ft}^2 \\ \text{Hard} & : & \geq 4.00 \ \text{tons/ft}^2 \\ \end{array}$

PRO	JEC:	r nai	ME:	BF	ROAD STRE	ET HOLLOW SLOPE	LOG OF BO	DRING	NO.	1		
100 100 100	JECT CATIO			Le	xington, Ne	w York	OFFSET -	ON				
CLI	ENT:			Ka	aterskill E	ingineering Associates	, P.C.	-O- m	CONFINE	compress	SIVE STREET	TH (TSF)
ELEVATION	PLE BER	SAMPLE	SAMPLE	RECOVERY	DESC	RIPTION OF MAT	ERIAL	1	0 2	0 30	R LIQUID	50
O DEP	SAM	SAM	SAM	REC	5	SURFACE ELEVATION		1		NETRAT	ION (BLO	
	1 2	SS		Ш	Sand and of and brown, fill	gravel, trace to some, moist, medium dense	silt, red (SM)(GM)		8	8		
-5-	3	ss		Ш	clayey sil	vel and sand, trace to t, red and brown, moist se (GM) (SM) fill	some to wet,		*			
	4	ss		Ш	Medium gr	avel, some sand, trace and brown, moist to	e to some vet, medium			>		
10		PA				sand, trace to some	clay, red		1			
-10-	5	ss	Ш			, wet, medium dense, s		6				
		PA			Fine sand	, some silt, trace to	SOME	-	1		-	
-15-	6	ss	П	Ш	gravel, re	ed and brown, wet, med	lium dense		8			
	7	PA			Clayey silt	e, trace to some gravel, n, moist, very dense (MI	trace sand,					100/.2
-20- -25-						BORING AT 18.7 PLIT SPOON REFU						
25					*							
-30-												
at !	ER LE 9.8'	whil	e sa	mplin	ng;	DGL FILE NO. (501		GEOTEC		UCKS, I	
DATE						STRATIFICATION LINES R APPROXIMATE BOUNDARY LIN SOIL TYPES: IN-SITU, T MAY BE GRADUAL	ES BETWEEN RANSITION	E			YORK 1202	0

PR	OJEC	T NA	ME:		BROAD ST	REET HOLLOW SLOPE	LOG OF B	BORING NO. 2 LOCATION: Other side of creek							
1	OJEC'	-		3	Lexington,	New York	BORING LO	CATION		er side m house	of cr	eek nhill			
CLI	ENT:			1	Kaaterskill	L Engineering Associates	, P.C.	-O- tox	COSTINED 2	COMPRESSIT	ve strengt	re (TSF) 5			
ELEVATION	SAMPLE	SAMPLE	SAMPLE	TOTAL DE LA COLUMNIA	DES	CRIPTION OF MATE	ERIAL	1	0 20	CONTENT S	40	50			
O DE	SA	SAL	SAN	000	1	SURFACE ELEVATION		8	PENE 0 20	DARD TRATIC		50			
	1	SS		Ц	Fine to trace gr	medium sand, trace to so cavel, red and brown, mod	ome silt, lst, loose	8							
	2	SS		μ	Note A:	(below)		8				1			
			+	T		co coarse gravel, some sa	nd trace	-		-		1			
-5-	3	SS	+		to some	silt, red and brown, moi	ist, very					71			
	4	SS			Clay, re	d and brown, moist to we	t, soft	P	-)		-			
10-	5	SS			(CL)			8							
					Shelby t	ube									
15-		PA			Silty cl moist to silt lay	ay, some silt, red and h wet, loose, soft (CL)(M	prown,								
	6	SS					-	8	\$						
		PA			Shelby t	ube									
20	7	ss	П	П	Set 10'	PVC 19.5' - 29.5'		♦							
25		PA	П		(CL) (ML)	me silt, trace sand, red oist to wet, loose, soft (SM) thin silt layers wi al thin sand layers		8							
23	8	ss			Fine sand,	trace silt, brown, wet, loo	ose (SP)								
		PA	Н-		Medium to	coarse gravel, some clarge sand, red and brown,	ayey								
20	9	ss			dense (GN	f)	wet,								
30					Note A:	BORING AT 30.0 F Fine to medium sand, som some silt, red and brown	me gravel.								
t 5.	0' b	efor	e ca	sin	g removal 2000	DGL FILE NO. 60	1		OTECHNI						
	Stan	rted:		03/	/30/00 /31/00	STRATIFICATION LINES REP APPROXIMATE BOUNDARY LINES SOIL TYPES: IN-SITU, TRA MAY BE GRADUAL.	BETWEEN	BAL	LSTON SP.	A, NEW YOR 0 347-2817					

PRO	JECT	NAI	ME:		BR	OAD STRE	ET HOLLOW SLOPE	LOG OF E	BORING N	10. 3		
	JECT CATIC				Lex	ington, Ne	w York	BORING LO	CATION:	21.7' of towards	ff maple creek	tree
CLI	ENT:				Kaa	aterskill E	ngineering Associat	es, P.C.	-O- UNCC	entined compre		TE (TSF)
ELEVATION DEPTH	SAMPLE NUMBER	SAMPLE	SAMPLE	TANCE	RECOVERY	DESC	RIPTION OF MA	TERIAL	10	PLASTIC WAT	0 40	50
ELE	SAM	SAM	SAM	DIS	REC	5	SURFACE ELEVATION	ON	⊗		TION (BLO	
-0-	1	ss	Ī		Ï	to some si	dium sand, some gra lt, trace roots, re se (SM) fill		8	20 3	0 40	50
	2	ss				Silty clay moist to w	, trace to some gra et, medium stiff (Cotes cobbles	vel, brown, L) fill		8		
-5-	3	PA	Н		11	Driller mo	wed hole 6' closer	to tree				50 8
							BORING AT 6.0	7 - 1 - 1 - 1				
						WITH SE	PLIT SPOON AND	POWER				
-10-						AUGER I	REFUSALS - CON	TINUE 3A				
-15-										14 3		
-20-												
-25-												
-30-												
at 3	R LE .8' be in at	fore o				ral; ng removal	DGL FILE NO	. 601		NIEL G. LO OTECHNICAL P.O. BOX	ENGINEERIN	
DATE 03/	31/00						STRATIFICATION LINE APPROXIMATE BOUNDARY SOIL TYPES: IN-SITU MAY BE GRADO	LINES BETWEEN , TRANSITION	BAI	LSTON SPA, NE (510) 347- (FAX 347-	W YORK 12020 2817).

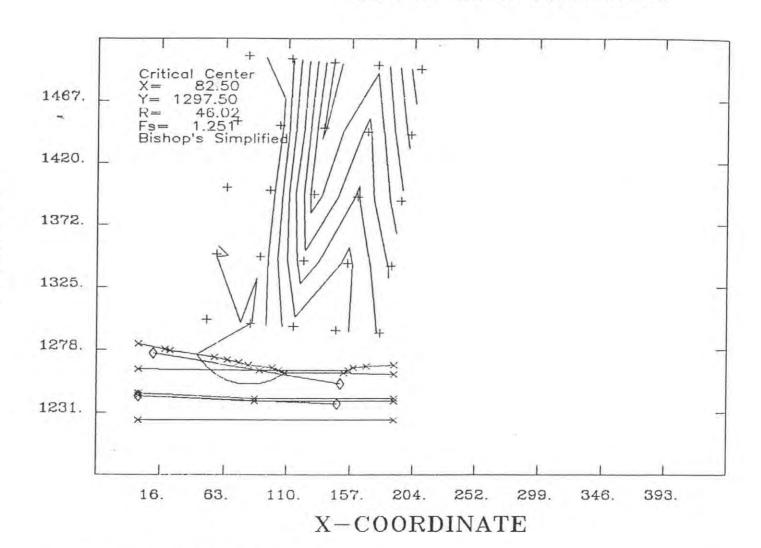

PRO	JEC:	r nai	ME:	BI	ROAD STR	EET HOLLOW SLOPE	LOG OF B	ORING N	10. 3	A		
	JECT CATIO			Le	xington, N	ew York	BORING LO	CATION:		oser t		
CLI	ENT:			Ka	aterskill	Engineering Associates	, P.C.	-O- UNICO	ONFINED CO	MPRESSIVE 3	STRENGT	er (TSF) 5
Z										WATER CONTENT		1
VATIO TH	PLE BER	SAMPLE	SAMPLE	RECOVERY	DESC	CRIPTION OF MAT	ERIAL	10		3,0	-1-	50
SELE DEP	SAM	SAM	SAM	REC		SURFACE ELEVATION		⊗ 10		TATION 30		50
	_	PA										
					Power and	er down to 5.0'						
-5-	4	SS	Ш	П	100	trace to some gravel, br						-
		1,555		П	wet, med.	stiff (CL) fill. Driller of the ce to some silt, red a	notes cobbles				-	
	5	SS	Ш		moist to	wet, loose, soft (CL) (ML) thin	-080				
-10-	6	SS	П	П	Clay, som	e silt, red and brown, e, soft (CL)(ML)	moist to	-06			1	1
	-	-	Ш		wet, 1009	e, soit (Ch) (Mh)		M				
		PA			Clav, tra	ce silt, brown, moist	to wet,					
-15-	6	SS		П	loose, so	ft (CL) (ML) thin silt	layers	♦				
		PA										
-20-	7	SS	П	П	Clay, tra	ce to some silt, trace ist to wet, loose, sof	sand,	8	+		1	
			Н	11	(CL) (ML) (SM) thin silt and sand	layers					
25		PA			Clayey si	lt, trace to some sand	, red and					
-25-	8	ss			layers	t, loose (ML) (SM) fine	Sand	8				
		PA										
-30-	9	SS						8				
-30					END OF	BORING AT 30.0	FEET					-
	R LE		asing	remov	val:	DGL FILE NO. 6	601			LOUC		
Cave-	in at				ng removal	STRATIFICATION LINES R	SPRESENT		P. O. 1	CAL ENGIN		
DATE 03/3	1/00					APPROXIMATE BOUNDARY LING SOIL TYPES: IN-SITU, TO MAY BE GRADUAL.	ES BETWEEN RANSITION	DAL.	(518)	347-2817 347-2817		

CROSS-SECTION OF GEOMETRY

1

BROADSTREET HOLLOW STREAM RELOCATION
3 MAY 00

FINDING SOIL GW PARAMETERS

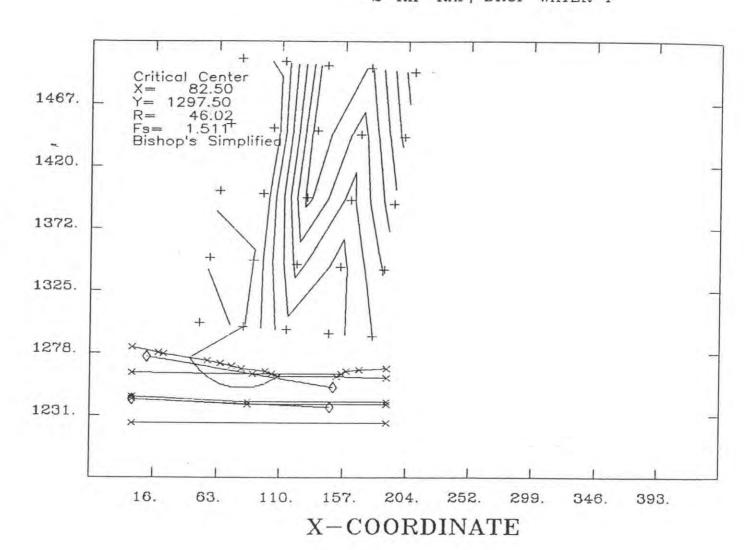

X-COORDINATE

UNIT WEIGHT	COHESION	PHI	DESCRIPTION
125.00	.00	32.00	CLAYEY SILT, SAND AND GRAVEL
115.00	.00	22.00	SILT AND CLAY
115.00	.00	34.00	FINE SAND
125.00	.00	34.00	TILL
-1.00	.00	.00	BOUNDRY
File name : 6	601-A.SET		

CROSS-SECTION OF GEOMETRY

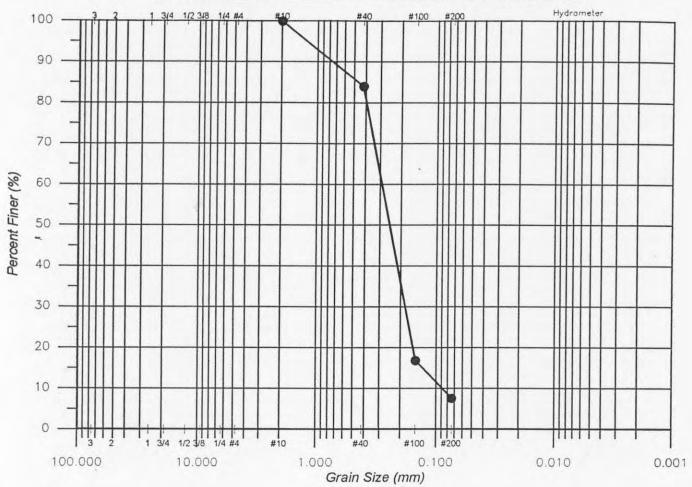
1

BROADSTREET HOLLOW STREAM RELOCATION
3 MAY 00
ADD 2' RIP-RAP ON STREAM BOTTOM


UNIT WEIGHT	COHESION	PHI	DESCRIPTION
110.00	.00	45.00	RIP-RAP
125.00	.00	32.00	CLAYEY SILT , SAND AND GRAVEL
115.00	.00	22.00	SILT AND CLAY
115.00	.00	34.00	FINE SAND
125.00	.00	34.00	TILL
-1.00	.00	.00	BOUNDRY
File name : 60	01-AA.SET		

CROSS-SECTION OF GEOMETRY

BROADSTREET HOLLOW STREAM RELOCATION


3 MAY 00

2' RIP-RAP, DROP WATER 4'

UNIT WEIGHT	COHESION	PHI	DESCRIPTION
110.00	.00	45.00	RIP-RAP
125.00	.00	32.00	CLAYEY SILT , SAND AND GRAVEL
115.00	.00	22.00	SILT AND CLAY
115.00	.00	34.00	FINE SAND
125.00	.00	34.00	TILL
-1.00	.00	.00	BOUNDRY'
File name : 6	01-AM.SET		

ASTM D 422 - Grain Size Analysis (washed)

Boring No.: B-2	Sample No.: S-8		Dep	oth: 25' - 27'
SIEVE SIZE % PAS	SING SIE	VE SIZE		% PASSING
1" =	1	No. 4	=	
3/4" =	i	No. 10	=	100.0%
1/2" =	1	No. 40	=	84.0%
3/8" =	1	No. 100	=	16.9%
1/4" =	1	No. 200	=	7.6%
Material Description: Fine S	AND, trace silt	Natural	Perc	ent Moisture: 23.7%

PROJECT:

Broadstreet Hollow Stream

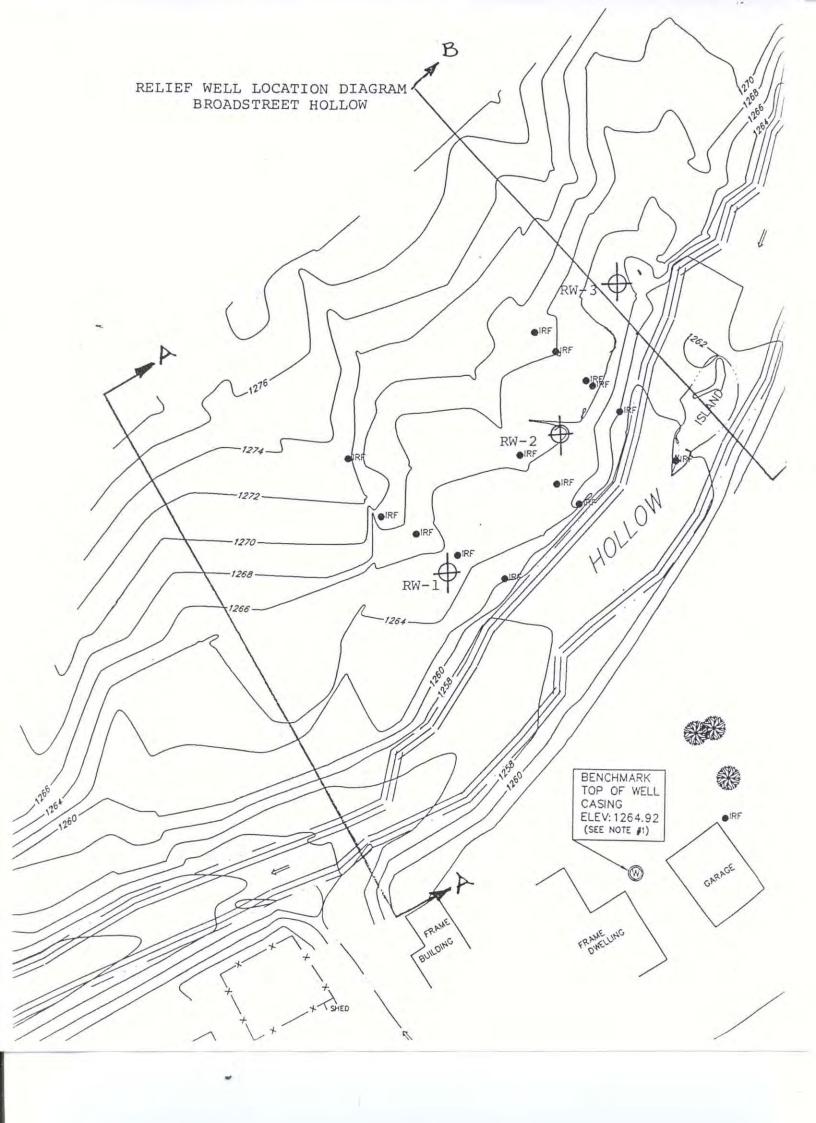
Lexington, Greene County, New York

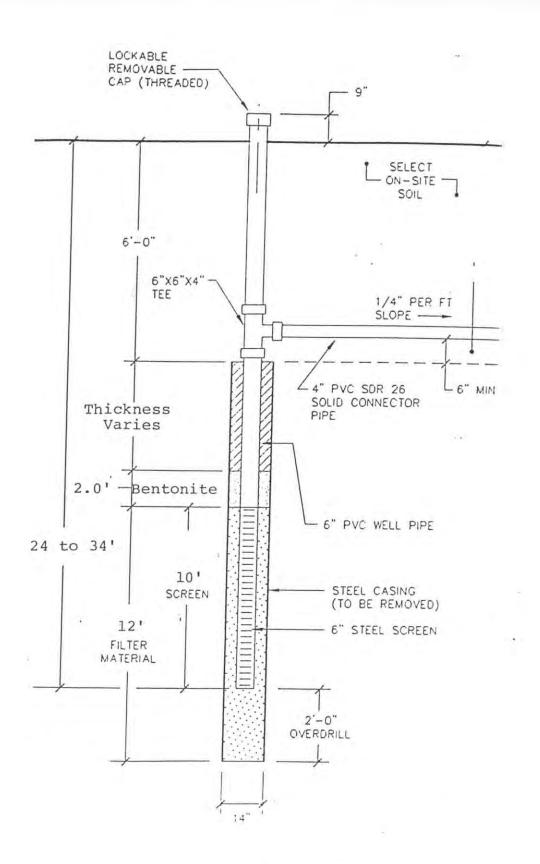
CLIENT:

PROJECT No .:

Daniel G. Loucks, PE, Ballston Spa, New York

DGL 601 DATE SAMPLED: 03/30/00 DATE TESTED: 05/03/00


VERNON HOFFMAN PE 118 South Ferry Street Schenectady, New York


(518) 382-0207 E-mail: VHoffmanPE@aol.com

CONSTRUCTION TECHNOLOGY

INSPECTION & TESTING DIVISION, P.D. & T.S., INC. 4 Williams Street, Ballston Lake, New York 12019, (518) 399-1848

CLIENT: DANIEL LOUCKS. P.E. REPORT NUMBER: I PAGE: 1 POST OFFICE BOX 163 REPORT DATE: 4/17/00 BALLSTON SPA. NEW YORK 12020 FILE NUMBER: 750.001 ATT'N: MR. DANIEL LOUCKS. P.E. FILE LOCATION: LOUCKS, 1175 PROJECT: BROAD HOLLOW ROAD SUMMARY OF TRIAXIAL PERMEABILITY TEST RESULTS SAMPLE # 1175: DESCRIPTION: UNDISTURBED TUBE SAMPLE: SAMPLE #1 @ 10-12' SAMPLE # : DESCRIPTION: SAMPLE # : DESCRIPTION: SAMPLE # : DESCRIPTION: PHYSICAL PROPERTY DATA SAMPLE: LAB ID: 1175 MAX. DRY DENSITY (pcf) OPTIMUM MOISTURE (%) SAMPLE HEIGHT (in.) 4.00 SAMPLE DIAMETER (in.) 2.80 SAMPLE WET WEIGHT (gm.) 761.30 SAMPLE WET DENSITY (pcf) 117.64 MOISTURE CONTENT (%) 43.10 SAMPLE DRY DENSITY (pcf) 82.21 FINAL HEIGHT (in.) FINAL DIAMETER (in.) FINAL WET WEIGHT (am.) WET DENSITY (pcf) MOISTURE CONTENT (%) DRY DENSITY (pcf) TEST PARAMETERS CELL PRESSURE (psi) 55.00 HEAD PREASURE (psi) 50.00 BACK PRESSURE (DSI) 45.00 PERMEABILITY INPUT DATA FLOW. Q (cc.) 1.90 LENGTH, L (in.) 4.00 AREA. A (102) 6.16 HEAD, h (051) 5.00 TIME, t (min) 240.00 TEMP. T (() 23.00 TEMPERATURE CORRECTION .931 INITIAL COMPACTION ! \$ 1 MOISTURE PELATION TO OPTIMUM PERMEABILITY, K = (cm/sec) 8.942-8 REPORT DISTRIBUTION: GENERAL NOTES: !! RESPECTFULLY. 1: FILE !: CONSTRUCTION TECHNOLOGY -- Con 3 !! TOM JOSLIN, S.E.T. (NICET) !! MANAGER TECHNICAL SERVICES

RELIEF WELL

gues) (soug	(Excluding particles larger than 3 in, and basing fractions on catimated weights) Wide range in grain size and at amounts of all intermediate sizes and at a size and at	ation Procedures an 3 in, and basing fractions on ad weights) Wide range in grain size and substantial amounts of all intermediate particle sizes Predominantly one size or a range of sizes with some intermediate sizes missing	sing fractions on grain size and substantial all intermediate particle one size or a range of sizes nitermediate sizes missing	Group Symbols GW	Typical Names Well graded gravels, gravel- sand mixtures, little or no fines Poorly graded gravels, gravel- sand mixtures, little or no tines	Information Required for Describing Soils Give typical name; indicate approximate percentages of sand and gravet; maximum size; angularity, surface condition, and hardness of the coarse.		Laboratory Classification Criteria $C_{\rm U} = \frac{D_{16}}{D_{10}} \text{Greater}$ $C_{\rm C} = \frac{D_{16}}{D_{19} \times D_{60}}$ Not meeting all gradati	n than 4 Between 1 and 3 ton requirements fo
fines (appreciable amount of fines)		Nonplastic fines (for identification pro- cedures see ML below) Plastic fines (for identification procedures, see CL below)	ification pro-	GC	Silty gravels, poorly graded gravel-sand-silt mixtures Clayey gravels, poorly graded gravel-sand-clay mixtures	policing policing	avel and sand fro free (fraction sma d soils are classific deciline cases red deciline cases red ual symbols	Atterberg limits below "A" line, or PI less than 4 Atterberg limits above E"A" line, with PI greater than 7	Above "A" line with PI between 4 and 7 are borderline cases requiring use of dual symbols
Clean sands (little or no fines)	Wide range in amounts of sizes	Wide range in grain sizza and substantial amounts of all intermediate particle sizza Predominantly one size or a range of sizza	d substantial	At S	Well graded sands, gravelly sands, little or no fines Poorly graded sands, gravelly	moisture conditions and drainage characteristics Example: Sally savely; about 20%, hard, angular gravel particles a l-in, maximum size; rounded		$C_{\rm U} = \frac{D_{\rm e0}}{D_{\rm 10}} \frac{\rm Greater}{\rm G}$ $C_{\rm O} = \frac{(D_{\rm 30})^3}{D_{\rm 10} \times D_{\rm 60}}$ Not meeting all grades	Etween 1 and 3
oldsio nt of	Ž	with some intermediate sizes missing onplastic fines (for identification procedures, see ML below)	crmediate sizes missing (for identification pro-	SM	Silty sands, poorly graded sand- silt mixtures	and successions and grains coarse to fine, about 15% non- plastic fines with low dry strength; well compacted and moist in place; alluvial sand;	ermine pe		Above "A" line
nd onqqa) uoma nd		Plastic fines (for identification procedures, see CL below)	n procedures,	sc	Clayey sands, poorly graded sand-clay mixtures	(SM)	Dei	Atterberg limits below "A" line with PI greater than 7	
xcedures	Identification Procedures on Fraction Smaller than No. 40 Sieve Size Dry Strength Dilasancy Toughness	aller than No.	40 Sieve Size Toughness						
	(crushing character- istics)	(reaction to shaking)	(consistency near plastic limit)				8 & FILLING	Comparing soils at equal liquid limit	X
	None to	Quick to	None	ML	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands with slight plasticity	Give typical name; indicate degree and character of plasticity, amount and maximum size of coarse orains.	xəbni y	Toughness and dry strength increase	
	Medium to high	None to very slow	Medium	7.0	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays	condition, odour if any, local or geologic name, and other perti- nent descriptive information, and symbol in parentheses	Plasticity S S		- OH
	Slight to medium	Slow	Slight	TO	Organic silts and organic silt- clays of low plasticity	For undisturbed soils add infor-	10	-נו איי	
	Slight to medium	Slow to none	Slight to medium	МН	Inorganic silts, micaccous or diatomaccous fine sandy or silty soils, clastic silts	ination on structure, stratuca- tion, consistency in undisturbed and remounded states, moisture and drainage conditions		10 20 30 40 50 60 7	70 80 90 100
	High to very high	None	High	СН	Inorganic clays of high plas- ticity, fat clays	Example:		Liquid limit	
	Medium to high	None to	Slight to medium	но	Organic clays of medium to high plasticity	Clayey silt, brown; slightly plastic; small percentage of	for lab	Prasticity chart for laboratory classification of fine grained soils	e grained soils
	Readily idea spongy feel	Readily identified by colour, odour, spongy feel and frequently by fibrous texture	dour, odour,	Pt	Peat and other highly organic soils	nne sand; numerous vertical root holes; firm and dry in place; loess; (ML)			

From Wagner, 1957.

* Boundary classifications. Soils possessing characteristics of two groups are designated by combinations of group symbols. For example GW-GC, well graded gravel-sand mixture with clay binder.

* Boundary classifications.

* All sieve sizes on this chart are U.S. standard.

Field Identification Procedures are to be performed on the minus No. 40 sieve size particles, approximately $M_{\rm c}$ in the performed on the minus No. 40 sieve size procedures are to be performed on the minus No. 40 sieve size, prepare a past of mosts control of performed on the minus No. 40 sieve size, procedures are to be performed on the minus No. 40 sieve size, procedures are to be performed on the minus No. 40 sieve size, procedures are to be performed on the minus No. 40 sieve size, procedures are to be performed on the minus No. 40 sieve size, procedures are to be performed on the minus No. 40 sieve size, procedures are to be performed on the minus No. 40 sieve size, procedures a past of soll size; mound a part of soll soll surface in the surface of the part in the open pains of the past of the CH past in the open pains of the past of the CH past in the open pains of the past in the open pains of the past which consistency of the derivative reaction of the past which consistency of the derivative reaction of the past which the past of the CH past in the open pains of the past which consistency of the past which the past of the past which consistency of the past which consistency of the derivative reaction of the derivative reaction of the derivative reaction of the past which consistency of the derivative reaction and strategate to the witer and gloss disappearance of water of the past which the past of the CH group. A specimen is collected and it strength is a measure of the past which the derivative reaction of the derivative reaction of the past which the derivative reaction of the past which the derivative reaction of the past which the derivative reaction of the derivative reaction of the past which the derivative reaction of the derivative reaction of the past which the derivative reaction of the derivative reaction of the past which the derivative reaction of the derivative reaction of the derivative reaction of the derivative reaction of the past of the CH group. A specimen is collected and it s Dilatancy (Reaction to shaking):

After removing particle linger than No. 40 sleve size, prepare a pat of mosts soil with a volume of about one-half cubic inch. Add enough water if necessary to make the soil soft but not sticky.

Place the pat in the open palm of one hand and shake the distinguishing vigorously against the other hand everal times. A positive reaction consists of the appearance of water on the surface of the pat which changes to a livery consistency and becomes glossy. When the sample is squeezed between the ingers, the water and gloss disappear from the surface, the pat stiften and finally it creats or crumbles. The rapidity of a presence of water during staking and of its disappearance during squeezing assist in identifying the character of the fines in a soil.

Very fine clean saids give the quickets and most distinct reaction whereas a plastic clay has no reaction. Inorganic sile, such as a typical rock flour, show a moderately quick reaction.

Toughtest (Consistency near plastic limit):

After removing particles larger than the No. 40 steve size, a specimen of soil about one-half inch cube in size, is moulded to the consistency of putty. If too dry, water must be added and if sticky, the specimen should be spread out in a thin layer and allowed to lose some moisture by evaporation. Then the specimen is tolled out by hand on a smooth surface or between the pains into a thread about one-cital inch in diameter. The thread is then folded and re-rolled repeatedly. During this manipulation the moisture content is gradually reduced and the specimen stifens, finally loses its plasticity, and crumbles when the plastic limit is reached. The pieces should be lumped together and a slight kneading action continued until the tump crumbles.

The tougher the thread near the plastic limit and the stiffer the lump when it finally crumbles, the more potent is the scolloidal clay fraction in the soil. Weterness of the thread at the plastic limit indicate either inorganic clays which occur below the Aline.

Clays which occur below the Aline.

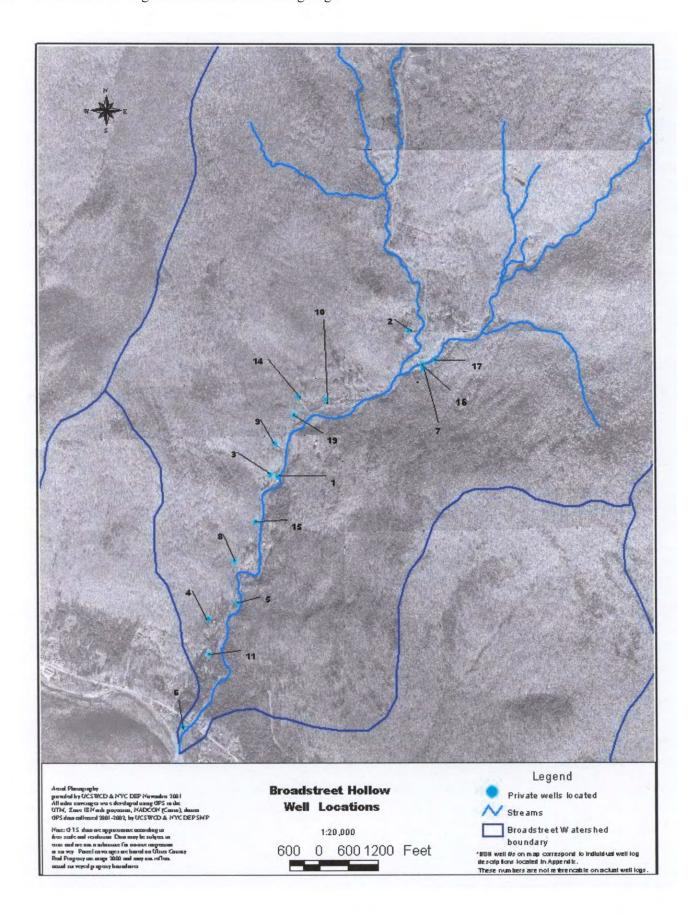
Highly organic clays have a very weak and spongy feel at the plastic limit.

Soil Characteristics Pertinent to Roads and Airfields

Maior Divisions	Latter	Neme	Valuence	Value	Value	Determine	Comments the tales.				The last for	The last Declary Velian
cuores no soferio	T COURT		Subgrade When	Subbase When	Base When	Frost	Compressibility	Characteristics	Compaction Equipment	Unit Dry Weight	CBR	Subgrade
	(1)		Not Subject to Frost Action	Not Subject to Frost Action	Not Subject to Frost Action	Action	Expansion			lb. per cu. ft.	(2)	Modulus k lb. per cu. in.
	GW	Well-graded gravels or gravel-sand mixtures, little or no fines	Excellent	Excellent	Good	None to very slight	Almost none	Excellent	Crawler-type tractor, rubber-tired roller, steel-wheeled roller	125-140	40-80	300-500
isora.	3	Poorly graded gravels or gravel-sand mixtures, little or no fines	Good to excellent	Good	Fair to good	None to very slight	Almost none	Excellent	Crawler-type tractor, rubber-tired roller, steel-wheeled roller	110-140	30-60	300-500
GRAVELLY	P 70	Silty gravels, gravel-sand-silt mixtures	Good to excellent	Good	Fair to good	Slight to medium	Very slight	Fair to poor	Rubber-tired roller, sheepsfoot roller; close control of moisture	125-145	40-60	300-500
			Good	Fair	Poor to not suitable	Slight to medium	Slight	Poor to practically impervious	Rubber-tired roller, sheepsfoot roller	115-135	20-30	200-200
	90	Clayey gravels, gravel sand-clay mixtures	Good	Fair	Poor to not suitable	Slight to medium	Slight	Poor to practically impervious	Rubber-tired roller, sheepsfoot roller	130-145	20-40	200-500
GRAINED	ws.	Well: graded sands or gravelly sands, linke or no fines	Good	Fair to good	Poor	None to very slight	Almost none	Excellent	Crawler-type tractor, rubber-tired roller	110-130	20-40	200-400
SAND	SP	Poorly graded sands or gravelly sands, little or no fines	Fair to good	Fair	Poor to not suitable	None to very slight	Almost none	Excellent	Crawler-type tractor, rubber-tired roller	105-135	10-40	150-400
SANDY	2	Silty sands, sand-silt mixtures	Fair to good	Fair to good	Poor	Slight to high	Very slight	Fair to poor	Rubber-tired roller, sheepsfoot roller; close control of moisture	120-135	15-40	150-400
	E .		Fair	Poor to fair	Not suitable	Slight to high	Slight to medium	Poor to practically impervious	Rubber-tired roller, sheepsfoot roller	100-130	10-20	100-300
	sc	Clayey sands, sand-clay mixtures	Poor to fair	Poor	Not suitable	Slight to high	Slight to medium	Poor to practically impervious	Rubber-tired roller, sheepsfoot roller	100-135	5-20	100-300
SILTS	ML	Inoganic silts and very fine sands, rock flour, silty or clayey fine sands or clayey silts with slight plasticity	Poor to fair	Not suitable	Not suitable	Medium to very high	Slight to medium	Fair to poor	Rubber-tired roller, sheeps foot roller; close control of moisture	90-130	15 or less	100-300
CLAYS CLAYS LL 18 1ESS	CL S	Inoganic clays of low to medium plasticity, gravelly clays, sandy clays, sity clays, lean clays	Poor to fair	Not suitable	Not suitable	Medium to high	Medium	Practically impervious	Rubber-tired roller, sheeps foot roller	90-130	15 or less	50-150
FINE. GRAINED	OF	Organic silts and organic silt-clays of low plasticity	Poor	Not suitable	Not suitable	Medium to high	Medium to high	Poor	Rubber-tired roller, sheepsfoot roller	90-105	5 or less	20.100
SILTS	MH	Inorganic silts, micaceous or diatoniaceous fine sandy or silty soils, elastic silts	Poor	Not suitable	Not suitable	Medium to very high	Ніgh	Fair to poor	Sheepsfoot roller, rubber-tired roller	80-105	10 or less	50-100
CLAYS LLIS GREATER	CH CH	Inorganic clays of medium to high plasticity, organic silts	Poor to fair	Not suitable	Not suitable	Medium	High	Practically impervious	Sheepsfoot roller, rubber-tired roller	90-115	15 or less	50-150
1HAN 50	НО 08	Organic clays of high plasticity, fat clays	Poor to very poor	Nox suitable	Not suitable	Medium	High	Practically impervious	Sheepsfoot roller, rubber-tired roller	80-110	5 or less	25-100
HIGHLY ORGANIC SOILS	£	Peat and other highly organic soils	Not suitable	Not suitable	Not suitable	Slight	Very high	Fair to poor	Compaction not practical	1	1	1

Note:

(1) Unit Dzy Weights are for compacted soil at optimum moisture content for modified AASHO compaction effort. Division of GM and SM groups into subdivision of d and ure for roads and afrields only. Subdivision is basis of Atterberg limits; suffix d e.g., GMdJ will be used when the liquid limit (LL.) is 25 or less and the plasticity index is 6 or less; the suffix u will be used otherwise.


(2) The maximum value that can be used in design of airfields is, in some cases, limited by gradation and plasticity requirements.

GENERAL QUALIFICATIONS

This report has been prepared in order to aid in the evaluation of this property and to assist the architect and/or engineer in the design of this project. The scope of the project and location described herein, and our description of the project represents our understanding of the significant aspects relevant to soil and foundation characteristics. In the event that any changes in the design or location of the proposed facilities, as outlined in this report, are planned, we should be informed so the changes can be reviewed and the conclusions of this report modified or approved in writing by ourselves.

It is recommended that all construction operations dealing with earthwork and foundations be inspected by an experienced soils engineer to assure that the design requirements are fulfilled in the actual construction. If you wish, we would welcome the opportunity to review the plans and specifications when they have been prepared so that we may have the opportunity of commenting on the effect of soil conditions on the design and specifications.

The analysis and recommendations submitted in this report are based upon the data obtained from the soil borings and/or test pits performed at the locations indicated on the location diagram and from any other information discussed in the report. This report does not reflect any variations which may occur between these borings and/or test pits. In the performance of subsurface investigations, specific information is obtained at specific locations at specific times. However, it is a well-known fact that variations in soil and rock conditions exist on most sites between boring locations and also such situations as groundwater conditions vary from time to time. The nature and extent of variations may not become evident until the course of construction. If variations then appear evident, it will be necessary for a reevaluation of the recommendations of this report after performing on-site observations during the construction period and noting the characteristics of any variations.

Summar	y of Domestic \	Nell Log Data								
						Surface	Depth to	Depth to	Thickness	
Well	Parcel #	Name registered on log	Mgt Unit	Easting	Northing	Elevation	Bedrock	Clay	of Clay	
BSH-1	5.4-1-47.100	Marshall	8	553521	4663794	1150	163	85	45	
BSH-2	204.00-2-5	Monsees	3		•	1340	47	0	47	wlu
BSH-3	5.4-1-48	Simmons	8	553452	4663807	1161	100	nr	nr	
BSH-4	5.4-1-41	Weber	13	553117	4662919	1065	198	20	20	
BSH-5	5.4-1-11	Lennon	12,13	553279	4663030	1134	119	85	10?	
BSH-6	5.18-2-22	Paultre	19	552907	4662317	1020	>142	14	106	
BSH-7	204.00-2-31	Rotella	3	554484	4664478	1263	>200	100	18	wlu
BSH-8	5.4-1-43	Ruane	10,11,12			1150	91	nr	nr	wlu
BSH-9	5.4-1-49.200	Sharon	8	553507	4663976	1190	172	?	?	wlu
	204.00-3-9	Collins	6 or 7	553825	4664269	1222	>160	65	36	
BSH-11	5.4-1-14	Cohn	14,15	553097	4662714	1068		?	?	
BSH-12	?	Pavisi	?				190	?	?	wlu
BSH-13		Krentz	?				103	nr	nr	wlu
BSH-14		Kelly	7	553648			220	?	?	
BSH 15	5.4-145	Tuozzo nl	12	553381	4663515	1204	nl	nl	nl	
BSH 16	204.00-2-36	Torregrossa Jr	3	554462	4664505	1260	nl	nl	nl	
BSH 17	204.00-2-38	Torregrossa Sr	3	554523	4664537	1257	nl	nl	nl	
	204.00-2-7	Rapp	3	554344	4664683	1326		nl	nl	
BSH 19	5.4-1-50	Channon/Charon	7,8	553613	4664175	1234	spring box	nl	nl	
nr			no clay re	ported						
?			not clear f	rom log						
nl			no log obt	ained						
wlu			well location	on uncertai	n/general e	lelvation, N	E of property	obtained if p	ossible	

Domestic Water S	upply Well	Log for the Broad	dstreet Hollow E	Basin	
Well Id	BSH-1	Parcel #	5.4-1-47.100	Coordinates	
Datum (ft amsl)		Mgt Unit	8	E:553521	N:4663794
Date Drilled	7/7/1987	Yield (gpm)	12		
Depth (ft)	197	Drilling Method:			
Depth Casing (ft)	163	Driller	Titan		

Depth	Elevation Driller's Description		Geologic Interpretation
0		Hardpan, gravel, boulders	glacial till
70		Fine gravel	glaciofluvial deposit
85		Clay	glaciolacustrune clay
130		Hardpan, gravel	glacial till
163		Green Shale	Oneonta Formation
170		Blue Sandstone	Oneonta Formation
183		Green Sandstone	Oneonta Formation
187		Blue Sandstone	Oneonta Formation
197		End of boring	
Depth to Bedrock:	163	·	•

The Upper Devonian Oneonta Formation is comprised of river deltaic deposits (fluvial sands, and overbank (flood plain) fine-grained deposits that were lithified into alternating layers of sandstone and siltstone/shales. The Onenota Formation is overlain

Domestic Water Supply Well Logs for the Broadstreet Hollow Basin

Well Id	BSH-2	Owner	204.00-2-5	Coordinates
Datum (ft amsl)		Mgt Unit	3	
Date Drilled	1986	Yield (gpm)	8	
Depth (ft)	248	Drilling Method		
Depth Casing (ft)	163	Driller	Titan	

Depth	Elevation	Driller's Description	Geologic Interpretation
0		Clay, fine gravel	glaciolacustrine/fluvial
47		Red Shale	Oneonta Formation
62		Blue Sandstone	Oneonta Formation
125		Green Sandstone	Oneonta Formation
146		Blue Sandstone	Oneonta Formation
197		Red Shale	Oneonta Formation
248		End of boring	

Depth to Bedrock:

Well Id	BSH-3	Owner	5.4-1-48	Coordinates	
Datum (ft amsl)		Mgt Unit	8	E:553452	N:4663807
Date Drilled	9/25/1986	Yield (gpm)	45		
Depth (ft)	248	Drilling Method	air hammer		
Depth Casing (ft)	105	Driller	Titan		
•		•			
Depth	Elevation	Driller's Descript	ion	Geologic Interpretation	<u>n</u>
0		hardpan		glacial till	
8		boulder		glacial till	
12		hardpan, water		glacial till	
24		boulder		glacial till	
30		coarse gravel		glaciofluvial deposit	
50		boulder		glaciofluvial deposit	
53		sand, water		glaciofluvial deposit	
70		boulder		glaciofluvial deposit	
77		sand, gravel, wate	er	glaciofluvial deposit	
89	· '	boulder		glaciofluvial deposit	
92		gravel		glaciofluvial deposit	
100		red/gray shale		Oneonta Formation	
168		blue sandstone		Oneonta Formation	
206		red/gray shale		Oneonta Formation	
248		end of boring			
Donth to Bodrook:	100	9		ı	1

Depth to Bedrock: 100

The Upper Devonian Oneonta Formation is comprised of river deltaic deposits (fluvial sands, and overbank (flood plain) fine-grained deposits that were lithified into alternating layers of sandstone and siltstone/shales. The Onenota Formation is overlain

Well Id	BSH-4	Owner		Coordinates	
Datum (ft amsl)		Mgt Unit	13	E:553117	N:4662919
Date Drilled	5/30/1984	Yield (gpm)	?		_
Depth (ft)	212	Drilling Method			
Depth Casing (ft)	180?	Driller	Titan		
	_	_		_	_
Depth	Elevation	Driller's Descript	ion	Geologic Interpretation	
0		clay and gravel		glacial till	
20		clay		glaciolacustrine deposit	
40		clay and a lot of b	oulders	glacial till	
80		clay		glaciolacustrine deposit	
123		rock			
130		clay		glaciolacustrine deposit	
147		rock			
149		clay and rocks		glacial till	
194		gravel and water		glaciofluvial deposit	
198		red shale		Oneonta Formation	
212		end of boring			
Depth to Bedrock:	198	· ·		1	•

Well Id	BSH-5	Owner		Coordinates	
Datum (ft amsl)		Mgt Unit	12, 13	E:553279	N:4663030
Date Drilled		Yield (gpm)	20/5		_
Depth (ft)	130	Drilling Method			
Depth Casing (ft)	100	Driller	Titan		
					
Depth	Elevation	Driller's Descript	ion	Geologic Interpretation	
0		boulders and grav	'el	glacial till?	
50		gravel and hardpa	an	glacial till?	
85		clay and sand		glaciolacustrine/fluvial?	
95		gravel and water		glaciofluvial deposit	
110		hardpan		glacial till	
119		green sandstone		Oneonta Formation	
130		end of boring			

Note: groundwater flow from gravel.

The Upper Devonian Oneonta Formation is comprised of river deltaic deposits (fluvial sands, and overbank (flood plain) fine-grained deposits that were lithified into alternating layers of sandstone and siltstone/shales. The Onenota Formation is overlain

Well Id	BSH-6	Owner		Coordinates	
Datum (ft amsl)		Mgt Unit	19	E:552907	N:4662317
Date Drilled	7/5/1997	Yield (gpm)	20		
Depth (ft)	142	Drilling Method			
Depth Casing (ft)	140	Driller	Titan		
Depth	Elevation	Driller's Descript	ion	Geologic Interpretation	1
Depth	Elevation	Driller's Descript sand and gravel		Geologic Interpretation fluvial deposit	
Depth 0 14					+
0		sand and gravel		fluvial deposit	
0 14		sand and gravel clay		fluvial deposit glaciolacustrine deposit	
0 14 120		sand and gravel clay sand		fluvial deposit glaciolacustrine deposit glaciofluvial deposit	

Domestic Water Supply Well Logs for the Broadstreet Hollow Basin						
Well Id	BSH-7	Owner	wner Coordinates			
Datum (ft amsl)		Mgt Unit	3	E:554484	N:4664478	
Date Drilled	?	Yield (gpm)	20			
Depth (ft)	200	Drilling Method				
Depth Casing (ft)	180	Driller	Titan			
				•		
Depth	Elevation	Driller's Descript	ion	Geologic Interpretation		
0		sand and gravel		fluvial deposit		
16		hardpan		glacial till		
38		sand and gravel		glaciofluvial deposit		
100		clay		glaciolacustrine deposit		
118		gravel and water		glaciofluvial deposit		
200		end of boring				
Depth to Bedrock:	>200	1				

Datum (ft amsl)	BSH-8	Owner		Coordinates
		Mgt Unit	10, 11, 12	
Date Drilled	7/27/1999	Yield (gpm)	20+	
Depth (ft)	235	Drilling Method	air hammer	
Depth Casing (ft)	97	Driller	Titan	
Domáh I		Duillanta Dagarina		
	Elevation	Driller's Descript	ion	Geologic Interpretation
0		hardpan/gravel		"lumped" glacial deposits
91		red shale		Oneonta Formation
106		green sandstone		Oneonta Formation
108		red shale		Oneonta Formation
138		red sandstone		Oneonta Formation
141		bluestone		Oneonta Formation
148		red sandstone		Oneonta Formation
151		bluestone		Oneonta Formation
164		green sandstone		Oneonta Formation
166		bluestone		Oneonta Formation
193		redshale		Oneonta Formation
235		end of boring		
Depth to Bedrock:	91			
The Unner Devonia	n Oneonta l	Formation is comp	rised of river	deltaic deposits (fluvial sands,
sandstone and siltst	• '	• .		ied into alternating layers of

Well Id	BSH-9	Owner		Coordinates	
Datum (ft amsl)		Mgt Unit	8	E:553507	N:4663976
Date Drilled	?/26/93	Yield (gpm)	8		
Depth (ft)	273	Drilling Method			
Depth Casing (ft)	180	Driller	Titan		
	_	_			
Depth	Elevation	Driller's Descript	ion	Geologic Interpretation	n
0		clay sand gravel v	vater	"lumped" glacial deposi	ts
172		red sandstone		Oneonta Formation	
186		red shale		Oneonta Formation	
193		blue sandstone		Oneonta Formation	
210		red sandstone		Oneonta Formation	
226		blue sandstone		Oneonta Formation	
240		red shale		Oneonta Formation	
273		end of boring			
Depth to Bedrock:	172				
I					
Note: tried to develop 170' gravel well a lot of water and a lot of sand.					

Note: tried to develop 170' gravel well a lot of water and a lot of sand. probably fluvial deposits above bdrk

Domestic Water Supply Well Logs for the Broadstreet Hollow Basin					
Well Id	BSH-10	Owner		Coordinates	
Datum (ft amsl)		Mgt Unit	6 or 7	E:553825	N:4664269
Date Drilled	6/26/1986	Yield (gpm)	50		
Depth (ft)	173	Drilling Method			
Depth Casing (ft)	160	Driller	Titan		
				-	
Depth	Elevation	Driller's Descript	ion	Geologic Interpretation	
0		top soil			
5		hardpan		glacial till	
18		boulder		glacial till	
21		hardpan		glacial till	
49		boulder		glacial till	
51		sand, water		glaciofluvial deposit	
65		clay, water		glaciolacustrine deposit	
101		sand, water		glaciofluvial deposit	
145		gravel, water		glaciofluvial deposit	
160		end of boring		-	
Depth to Bedrock:	>160	,			
log ends description	n at 160, but	form states total of	depth drilled a	at 173.	•

Well Id	BSH-11	Owner		Coordinates		
Datum (ft amsl)		Mgt Unit	14, 15	E:553097	N:4662714	
Date Drilled	1/28/1984	Yield (gpm)	30			
Depth (ft)	273	Drilling Method				
Depth Casing (ft)	170	Driller	Titan			
<u>[</u>	•	-		<u>.</u>		
Depth	Elevation	Driller's Descript	ion	Geologic Interpretation		
0		hardpan and bould	ders	glacial till		
60		sand		glaciofluvial deposit		
70		clay with sand and	d boulders	glacial till, g'lacustrine?		
160		bluestone		Oneonta Formation		
172		red shale		Oneonta Formation		
216		blue shale		Oneonta Formation		
225		red shale		Oneonta Formation		
240		bluestone		Oneonta Formation		
273		end of boring				
Depth to Bedrock: 160						
The Upper Devonian Oneonta Formation is comprised of river deltaic deposits (fluvial sands, and overbank (flood plain) fine-grained deposits that were lithified into alternating layers of sandstone and siltstone/shales. The Onenota Formation is overlain						

Well Id	BSH-12	Owner		Coordinates
Datum (ft amsl)		Mgt Unit	19?	
Date Drilled	?	Yield (gpm)	100	
Depth (ft)	198	Drilling Method		
Depth Casing (ft)	190	Driller	Titan	

Depth	Elevation	Driller's Description	Geologic Interpretation	
0		no description	glacial till	
120		gravel and sand (no water)	glaciofluvial deposit	
190		bluestone	Oneonta Formation	
192		green sandstone	Oneonta Formation	
195		bluestone	Oneonta Formation	
198		end of boring	Oneonta Formation	
		-		
Depth to Bedrock:	190	•		

Setup on existing well 105 ft deep.

Depth to Bedrock:

The Upper Devonian Oneonta Formation is comprised of river deltaic deposits (fluvial sands, and overbank (flood plain) fine-grained deposits that were lithified into alternating layers of sandstone and siltstone/shales. The Onenota Formation is overlain

				-	
Well Id	BSH-13	Owner		Coordinates	
Datum (ft amsl)		Mgt Unit	?		
Date Drilled	9/25/1989	Yield (gpm)	6		
Depth (ft)	248	Drilling Method	air		
Depth Casing (ft)	112	Driller	Titan		
	-	-	-	•	
Depth	Elevation	Driller's Descript	ion	Geologic Interpretation	
0		hardpan boulders		glacial till	
3		sand/gravel/bould	ers/water	mixed till/g'fluvial deposit	
103		blue sandstone		Oneonta Formation	
186		red shale		Oneonta Formation	
218		red/blue sandston	е	Oneonta Formation	
229		red shale		Oneonta Formation	
248		end of boring			

The Upper Devonian Oneonta Formation is comprised of river deltaic deposits (fluvial sands, and overbank (flood plain) fine-grained deposits that were lithified into alternating layers of sandstone and siltstone/shales. The Onenota Formation is overlain

103

Domestic Water Supply Well Logs for the Broadstreet Hollow Basin					
Well Id	BSH-14	Owner		Coordinates	
Datum (ft amsl)		Mgt Unit	7	E:553648	N:4664285
Date Drilled	7/6/1973	Yield (gpm)	?		
Depth (ft)	300?	Drilling Method			
Depth Casing (ft)	240?	Driller	Titan		
Donth	1				
Depth	Elevation	Driller's Descript	ion	Geologic Interpretation	
125		Driller's Descript dirty gravel	ion	Geologic Interpretation glaciofluvial deposit?	
_			ion	<u> </u>	
125		dirty gravel	ion	glaciofluvial deposit?	
125 160		dirty gravel boulder		glaciofluvial deposit? glaciofluvial deposit?	
125 160 163		dirty gravel boulder dirty gravel	ravel	glaciofluvial deposit ? glaciofluvial deposit ? glaciofluvial deposit ?	

Oneonta Formation

Depth to Bedrock: 220

275

300

Setup on existing well 120? ft deep. description starts at 125 ft

blue sandstone?

end of boring